当前位置: 首页 > news >正文

DAY38 动态规划 + 509. 斐波那契数 + 70. 爬楼梯 + 746. 使用最小花费爬楼梯

动态规划理论

动态规划,Dynamic Programming, DP, 如果某一问题有很多重叠子问题,使用动态规划是最有效的。

所以动态规划中每一个状态一定是由上一个状态推导出来的,这一点就区分于贪心,贪心没有状态推导,而是从局部直接选最优的,

状态转移公式(递推公式)是很重要,但动规不仅仅只有递推公式。

对于动态规划问题,我将拆解为如下五步曲,这五步都搞清楚了,才能说把动态规划真的掌握了!

  1. 确定dp数组(dp table)以及下标的含义
  2. 确定递推公式
  3. dp数组如何初始化
  4. 确定遍历顺序
  5. 举例推导dp数组

509. 斐波那契数

题目要求:斐波那契数,通常用 F(n) 表示,形成的序列称为 斐波那契数列 。该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是: F(0) = 0,F(1) = 1 F(n) = F(n - 1) + F(n - 2),其中 n > 1 给你n ,请计算 F(n) 。

思路

动规五部曲:

这里我们要用一个一维dp数组来保存递归的结果

  1. 确定dp数组以及下标的含义 dp[i]的定义为:第i个数的斐波那契数值是dp[i]
  2. 确定递推公式 状态转移方程 dp[i] = dp[i - 1] + dp[i - 2];
  3. dp数组如何初始化 dp[0] = 0; dp[1] = 1;
  4. 确定遍历顺序,从前向后遍历
  5. 举例推导 根据公式当n=10时,数列为0 1 1 2 3 5 8 13 21 34 55
class Solution {
public:int fib(int n) {if (n <= 1) return n;vector<int> dp(n+1);dp[0] = 0;dp[1] = 1;for (int i = 2; i <= n; ++i) {dp[i] = dp[i-1] + dp[i-2];}return dp[n];}
};

70. 爬楼梯

题目要求:

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。

每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?

注意:给定 n 是一个正整数。

思路

上第i个台阶的方法数=上第i-1个台阶的方法数(爬1个台阶)+上第i-2个台阶的方法数(爬2个台阶)

class Solution {
public:int climbStairs(int n) {if (n<=1) return n;int dp[3];dp[1] = 1;dp[2] = 2;for (int i = 3; i <= n; ++i) {int sum = dp[1] + dp[2];dp[1] = dp[2];dp[2] = sum;}return dp[2];}
};

746. 使用最小花费爬楼梯

题目要求:数组的每个下标作为一个阶梯,第 i 个阶梯对应着一个非负数的体力花费值 cost[i](下标从 0 开始)。

每当你爬上一个阶梯你都要花费对应的体力值,一旦支付了相应的体力值,你就可以选择向上爬一个阶梯或者爬两个阶梯。

请你找出达到楼层顶部的最低花费。在开始时,你可以选择从下标为 0 或 1 的元素作为初始阶梯。

思路

修改之后的题意就比较明确了,题目中说 “你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯” 也就是相当于 跳到 下标 0 或者 下标 1 是不花费体力的, 从 下标 0 下标1 开始跳就要花费体力了。

  • 确定dp数组以及下标的含义

使用动态规划,就要有一个数组来记录状态,本题只需要一个一维数组dp[i]就可以了。

dp[i]的定义:到达第i台阶所花费的最少体力为dp[i]

  • 确定递推公式

可以有两个途径得到dp[i],一个是dp[i-1] 一个是dp[i-2]

dp[i - 1] 跳到 dp[i] 需要花费 dp[i - 1] + cost[i - 1]。

dp[i - 2] 跳到 dp[i] 需要花费 dp[i - 2] + cost[i - 2]。

那么究竟是选从dp[i - 1]跳还是从dp[i - 2]跳呢?

一定是选最小的,所以dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);

  • dp数组如何初始化

看一下递归公式,dp[i]由dp[i - 1],dp[i - 2]推出,既然初始化所有的dp[i]是不可能的,那么只初始化dp[0]和dp[1]就够了,其他的最终都是dp[0]dp[1]推出。

那么 dp[0] 应该是多少呢? 根据dp数组的定义,到达第0台阶所花费的最小体力为dp[0],那么有同学可能想,那dp[0] 应该是 cost[0],例如 cost = [1, 100, 1, 1, 1, 100, 1, 1, 100, 1] 的话,dp[0] 就是 cost[0] 应该是1。

这里就要说明本题力扣为什么改题意,而且修改题意之后 就清晰很多的原因了。

新题目描述中明确说了 “你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯。” 也就是说 到达 第 0 个台阶是不花费的,但从 第0 个台阶 往上跳的话,需要花费 cost[0]。

所以初始化 dp[0] = 0,dp[1] = 0;

  • 确定遍历顺序

因为是模拟台阶,而且dp[i]由dp[i-1]dp[i-2]推出,所以是从前到后遍历cost数组就可以了。

  • 举例推导dp数组

拿示例2:cost = [1, 100, 1, 1, 1, 100, 1, 1, 100, 1] ,来模拟一下dp数组的状态变化,如下:

class Solution {
public:int minCostClimbingStairs(vector<int>& cost) {vector<int> dp(cost.size() + 1);dp[0] = 0;dp[1] = 0;for (int i = 2; i <= cost.size(); ++i) {dp[i] = min(dp[i-1] + cost[i-1], dp[i-2] + cost[i-2]);}return dp[cost.size()];}
};
  • 时间复杂度:O(n)
  • 空间复杂度:O(n)
  • 还可以优化空间复杂度,因为dp[i]就是由前两位推出来的,那么也不用dp数组了,优化方法和上一题同理。
http://www.lryc.cn/news/211205.html

相关文章:

  • Redis快速上手篇七(集群-一台虚拟机六个节点)
  • 社恐了怎么办?如何改变社交恐惧症?
  • HiQPdf Library for .NET - HTML to PDF Crack
  • ES6中Set集合
  • 论坛介绍 | COSCon'23 开源文化(GL)
  • 【httpd】 Apache http服务器目录显示不全解决
  • 笔记本电脑搜索不到wifi6 无线路由器信号
  • js获取input?
  • STM32 CAN使用
  • 安全和便捷:如何将运营商二要素API应用于实名制管理中
  • leetcode-二叉树
  • 【鸿蒙软件开发】ArkTS基础组件之TextTimer(文本显示计时)、TimePicker(时间选择)
  • pytorch 笔记:KLDivLoss
  • 父子项目打包发布至私仓库
  • 汽车网络安全--ECU的安全更新
  • NLP之搭建RNN神经网络
  • Android问题笔记四十三:JNI 开发如何快速定位崩溃问题
  • 机器学习 | 决策树算法
  • javascript中各种风骚的代码
  • el-tree横向纵向滚动条
  • STM32G030F6P6 芯片实验 (一)
  • Wpf 使用 Prism 实战开发Day01
  • 6G关键新兴技术- 智能超表面(RIS)技术演进
  • 【redhat9.2】搭建Discuz-X3.5网站
  • 算法篇 : 并查集
  • AM@微积分基本定理@微积分第二基本定理
  • goland常用快捷键
  • CSDN写文章时常见问题及技巧
  • JVM虚拟机详解
  • Go 怎么操作 OSS 阿里云对象存储