当前位置: 首页 > news >正文

深入浅出排序算法之堆排序

目录

1. 算法介绍

2. 执行流程⭐⭐⭐⭐⭐✔

3. 代码实现

4. 性能分析


1. 算法介绍

堆是一种数据结构,可以把堆看成一棵完全二叉树,这棵完全二叉树满足:任何一个非叶结点的值都不大于(或不小于)其左右孩子结点的值。若父亲大孩子小,则这样的堆叫作大顶堆;若父亲小孩子大,则这样的堆叫作小顶堆。

根据堆的定义知道,代表堆的这棵完全二叉树的根结点的值是最大(或最小)的,因此将一个无序序列调整为一个堆,就可以找出这个序列的最大(或最小)值,然后将找出的这个值交换到序列的最后(或最前),这样,有序序列关键字增加1个,无序序列中关键字减少1个,对新的无序序列重复这样的操作,就实现了排序。这就是堆排序的思想。

堆排序中最关键的操作是将序列调整为堆。整个排序的过程就是通过不断调整,使得不符合堆定义的完全二叉树变为符合堆定义的完全二叉树。

2. 执行流程⭐⭐⭐⭐⭐✔

建堆是先从自下而上,从右往左建

初始堆的每一个结点都要满足堆的定义,也就是父节点的值大于左右孩子结点的值!!!

选出最大值,是将根结点和最后一个结点互换,然后继续构建大顶堆!!!

⭐⭐⭐堆顶和最后一个元素交换,才算一趟,也是该趟的最终序列结果!!!

建堆和排序结果是两个阶段,但同属于一趟中。

图示如下:

3. 代码实现

为了三个步骤:

步骤一:先建堆(大根堆或者小根堆)

步骤二:交完堆顶和最后一个元素,然后堆的大小减一

步骤三:向下调整堆

步骤一只需实现一次,步骤二和步骤三循环执行,得到最终的有序序列。

    //开始排序:堆排序分为三个功能 ①开始建堆,②交换,③向下调整,重复②和③步public static void heapSort(int[] array,int len){int end = len - 1;//确定最后一个结点的下标createHeap(array);//建堆//当只剩下一个结点的时候,就不需要交换while(end > 0){//交换swap(array,0,end);//向下调整shiftDown(array,0,end);//调整完一个结点,下一个end--;}}//交换数据public static void swap(int[] array,int i,int j){int tmp = array[i];array[i] = array[j];array[j] = tmp;}//堆排序(大根堆)//从上往下建堆,所以先找父节点,再找孩子结点public static void createHeap(int[] array){for(int parent = (array.length - 1 - 1) / 2;parent >= 0;parent--){shiftDown(array,parent,array.length);}}//向下调整public static void shiftDown(int[] array,int parent,int len){//定义一个记录孩子下标的变量(左孩子)int child = 2 * parent + 1;//判断父节点和孩子结点的大小,至少左孩子要存在while(child < len){//比较左右孩子if((child + 1) < len && array[child] < array[child + 1]){child++;}//判断父节点和孩子节点if(array[child] > array[parent]){swap(array,child,parent);parent = child;child = 2 * parent + 1;}else{break;}}}
    public static void main(String[] args) {int[] a = {5,4,3,2,1};Sort.heapSort(a, a.length);for (int x : a) {System.out.print(x + " ");}}

4. 性能分析

时间辅助度空间复杂度
O(N*logN)O(1)
数据不敏感数据不敏感

稳定性:不稳定。

来上解析,怎么计算这个时间复杂度。

(1)步骤一的时间复杂度:首先知道有N个结点开始建堆,这个时间复杂度就是O(N),大家可以去看看这篇文章,里面有讲建堆的时间复杂度。链接如下:

数据结构——堆、堆排序和优先级队列(代码为Java版本)

(2)步骤二和步骤三循环的时间复杂度:那么我第一个结点交换时,需要向下调整为log(N - 1)层;交换第二个结点后,需要向下log(N - 2),接下来就是log(N - 3),log(N - 4),……,log1。所以总的调整次数是log(N - 1) + log(N - 2) + log(N - 3) + log(N - 4) + …… + log1 = log((N - 1)!)。

我们可以在网上看到堆排序的时间复杂度是O(N*logN),这是堆排序的大致估算(我们算时间复杂度都是算个大概),其实log((N - 1)!) 约等于 NlogN。下面是我的证明结果:

① 使用夹逼准则证明:

先求上限:\log \left ( n!\right ) = \sum_{i = 1}^{n}\log \left ( i \right )\leqslant \sum_{i=1}^{n}\log \left ( n \right )=\log n^{n}=O\left (n\log n \right )

再求下限:

因为 n! \geqslant \left ( \frac{n}{2} \right )^{\frac{n}{2}}

所以 \log \left ( n! \right )\geqslant \log \left ( \frac{n}{2} \right )^{\frac{n}{2}}= \frac{n}{2}\log \frac{n}{2}= \frac{n}{2}\log n-\frac{n}{2}\log 2

当 n\geqslant 4 时,\frac{n}{2}\log 2=\frac{1}{4}n\log 4\leqslant \frac{1}{4}n\log n               

② 则有:

\log \left ( n! \right )\geqslant \frac{n}{2}\log n-\frac{n}{2}\log 2\geqslant \frac{n}{2}\log n-\frac{1}{4}n\log n=\frac{1}{4}n\log n\approx \Omega \left ( n\log n \right )     

③结论:\log \left ( n! \right ) 既是 n\log n 的低阶函数,又是 n\log n 的高阶函数,因此是 n\log n 的同阶函数!

(3)由于上面的证明步骤,我们可以知道堆排序的时间复杂度是  O\left ( n\log n \right ) 。

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           

http://www.lryc.cn/news/211167.html

相关文章:

  • Linux 命令(11)—— tcpdump
  • 8.自定义组件布局和详解Context上下文
  • 几个Web自动化测试框架的比较:Cypress、Selenium和Playwright
  • Android Studio中配置aliyun maven库
  • 记录使用阿里 ARoute 遇到的坑
  • lesson2(补充)关于const成员函数
  • 前端 :用HTML ,JS写一个 双色球彩票中将机制,因为时间不够,加上本人懒没有用CSS美化界面,多包涵
  • 前端页面如何自适应--4种方法
  • 2024王道考研计算机组成原理——总线
  • 【Linux】进程概念(下)
  • 基于Spring Boot的本科生就业质量设计与实现
  • 238. 除自身以外数组的乘积 --力扣 --JAVA
  • 如何判断一个类是线程安全的
  • MyBatis的各种查询功能
  • 【Tomcat】如何在idea上部署一个maven项目?
  • Three.js 材质的 blending
  • 关于pcl 给new出的数据赋值报错问题
  • window11 更改 vscode 插件目录,释放C盘内存
  • 【PyQt学习篇 · ⑥】:QWidget - 事件
  • Vue、jquery和angular之间区别
  • MATLAB算法实战应用案例精讲-【图像处理】机器视觉(基础篇)(六)
  • 硬件知识积累 RS232 接口
  • 机器人入门(四)—— 创建你的第一个虚拟小车
  • 部署K8S
  • [NSSCTF 2nd] web刷题记录
  • MyBatis获取参数值的两种方式(重点)
  • Cesium弹窗可随地图移动
  • MySQL WITH AS及递归查询
  • Harbor私有镜像仓库搭建
  • 线段树 区间赋值 + 区间加减 + 求区间最值