当前位置: 首页 > news >正文

Numpy、Pandas、Matplotlib学习(更新ing...)

数据科学

    • 一、Numpy
    • 二、Pandas
    • 三、Matplotlib
    • 参考链接

一、Numpy

在numpy中以np.nan表示缺失值,它是一个浮点数。

二、Pandas

1、如要选出col0在30到80之间的行中col3与col1之差为奇数的行,或者col2大于50中的行col3超过col1均值的行,可以如下写出:

c11 = df["col 0"].between(30, 80)
c12 = (df["col 3"] - df["col 1"]) % 2 ==1
c21 = df["col 2"] > 50
c22 = df["col 3"] > df["col 1"].mean()
df.loc[(c11 & c12) | (c21 & c22)]

2、分别统计每一列的缺失值比例和每一行的缺失值比例

df.isna().mean()  # 默认mean的axis参数为0,按照行方向计算列的均值。
df.isna().mean(axis=1)

如果想要统计每列包含的缺失值个数,只需把mean替换为sum即可。
如果想知道缺失的行或列具体实哪一些,可以如下操作:

df[df.isna().sum(1) >= 2]

在pandas中,删除某些包含缺失值的行或列可以通过dropna函数来实现:

df.dropna(axis=1,thresh=90)  # axis为1和0分别指删除列和行 
# thresh表示非缺失值没有达到这个数量的相应维度会被删除。

3、DataFrame.plot( )函数
使用pandas.DataFrame的plot方法绘制图像会按照数据的每一列绘制一条曲线,默认按照列columns的名称在适当的位置展示图例,比matplotlib绘制节省时间,且DataFrame格式的数据更规范,方便向量化及计算。

DataFrame.plot(x=None, y=None, kind='line', ax=None, subplots=False, sharex=None, sharey=False, layout=None, figsize=None, use_index=True, title=None, grid=None, legend=True, style=None, logx=False, logy=False, loglog=False, xticks=None, yticks=None, xlim=None, ylim=None, rot=None, fontsize=None, colormap=None, position=0.5, table=False, yerr=None, xerr=None, stacked=True/False, sort_columns=False, secondary_y=False, mark_right=True, **kwds)

4、将数据写入到Excel的多个sheet
有时一个excel内会有多个sheet。但是将两组数据通过to_excel函数先后保存到一个excel内会发现只有后一组保存的数据,因为前一组的数据被后写入的数据覆盖了。

df1.to_excel('xxx.xlsx',sheet_name='df1')
df2.to_excel('xxx.xlsx',sheet_name='df2')

使用pd.ExcelWriter建立一个writer,然后,将df1,df2都使用to_excel(writer, sheet名),最后一次性将这些数据保存,并关闭writer就完成了

writer = pd.ExcelWriter('xxx.xlsx')
df1.to_excel(writer,sheet_name="df1")
df2.to_excel(writer,sheet_name="df2")writer.save()
writer.close()

这样会覆盖我们原有的excel数据,如果不想覆盖,可以:

writer = pd.ExcelWriter('保存.xlsx')  # 如果不存在,会自动创建excel
df = pd.read_excel("xxx.xlsx", sheet_name=xxx)
......
df_res.to_excel(writer, sheet_name=xxx, index=False)

5、找出每行或列的最大值所在的列索引或行索引:

返回一列最大值所在行的行索引df.idxmax(),默认参数为0

若参数设置为1,则为一行最大值所在列的列索引df.idxmax(1)

(取最小值为df.idxmin()

三、Matplotlib

1、设置x轴为时间刻度

imoort pandas as pd
import matplotlib.pyplot as plt
import matplotlib.dates as mdatesdf = pd.read_excel("***.xlsx")
# 绘制图像
fig, ax = plt.subplots()
ax.plot(df['time'], df['*'])
# 配置x轴时间间隔
time_format = mdates.DateFormatter('%H:%M:%S')
ax.xaxis.set_major_formatter(time_format)
ax.xaxis.set_major_locator(mdates.MinuteLocator(interval=240))
# 设置刻度位置
ax.set_xticks(pd.date_range(df['time'][0], df['time'][-1], freq='4h'))
# 还可以使用ax.set_xticklabels()来设置刻度的标签
# 设置开始坐标
ax.set_xlim(df['time'][0], df['time'][-1])
# 旋转x轴标签
fig.autofmt_xdate()
# 展示图形
plt.show()

参考链接

https://github.com/datawhalechina/joyful-pandas
https://github.com/datawhalechina/powerful-numpy
https://github.com/datawhalechina/fantastic-matplotlib

http://www.lryc.cn/news/210617.html

相关文章:

  • Linux-sdio接口
  • 【MATLAB源码-第62期】基于蜣螂优化算法(DBO)的无人机三维地图路径规划,输出最短路径和适应度曲线。
  • RealVNC Enterprise 7.7.0 Crack
  • Windows下Jenkins自动化部署SpringBoot应用
  • Leetcode59螺旋矩阵2
  • 抖音很火的情侣飞行棋/真心话大冒险/情侣扫雷html网站源码带在线支付、代理分销等!
  • Word批量删除文档属性和个人信息方法图解
  • Kubernetes(K8s)从入门到精通系列之十八:使用 Operator Lifecycle Manager(OLM) 安装operator
  • request、response请求转发和重定向
  • MySql学习路线
  • Vue实现首页导航和左侧菜单,介绍mock.js并实现登录注册间的跳转,实现左侧栏折叠效果,优化Main.vue组件,使用mock.js生成随机响应数据
  • 汇总下之RobotFramework自动化框架的系列文章
  • 0052【Edabit ★☆☆☆☆☆】Learn Lodash: _.drop, Drop the First Elements of an Array
  • 从无人机到实景三维海洋系统
  • 第二章前端开发ES6基础
  • 使用Python将PDF转为图片
  • JAVA 同城服务货运搬家小程序系统开发时应注意哪些?
  • uniapp开发小程序 小米手机真机bottom:0无效 底部间隙 设备安全区域处理办法
  • 四十、【进阶】索引失效情况2
  • 敏感词过滤--golang
  • NVIDIA cuda安装时全部失败
  • APScheduler-调度器AsyncIOScheduler
  • 二十三种设计模式全面解析-原型模式(Prototype Pattern)详解:创造对象的奇妙之道
  • el-input 给icon图标绑定点击事件
  • 计算机网络——物理层
  • 常用排序算法
  • MGRE环境下的OSPF
  • 【计算机毕设】微信小程序案例-学生签到系统
  • 【数据分析】上市公司半年报数据分析
  • 【C++初阶】类和对象——操作符重载const成员函数取地址重载日期类的实现