当前位置: 首页 > news >正文

CSP-J 2023 T3 一元二次方程 解题报告

CSP-J 2023 T3 一元二次方程 解题报告

Link

前言

今年 C S P CSP CSP的原题, 回家 1 h 1h 1h内写 A C AC AC, 但是考场上没有写出来 , 原因是脑子太不好了, 竟然调了两个小时没有调出来. 一等奖悬那…

正题

看完题目,第一眼就是大模拟, 并且 C C F CCF CCF绝对不会让你好受,所以出了一个如此刁钻的题目, 并且要考虑到非常多的情况, 代码非常长…

最重要的一点: Δ \Delta Δ

Δ \Delta Δ是此题中最重要的分情况讨论的地方. 根据初三 22 22 22章的所学知识 ,可知分三种情况:

1. Δ < 0 \Delta < 0 Δ<0

不用说了
直接输出NO

2. Δ = 0 \Delta = 0 Δ=0

同样的, 只有一种情况, 答案为 − b 2 a - \dfrac{b}{2a} 2ab,但是, 需要严谨的判断.

if(delta == 0) {if(b == 0) {cout << 0;}else if(a * b > 0) {a = abs(a);b = abs(b);cout << "-";if(b % (2 * a) == 0) {cout << b / 2 / a;}else {cout << b / __gcd(2 * a, b) << "/" << (2 * a) / __gcd(2 * a, b);}}else {a = abs(a);b = abs(b);if(b % (2 * a) == 0) {cout << b / 2 / a;}else {cout << b / __gcd(2 * a, b) << "/" << (2 * a) / __gcd(2 * a, b);}}
}

3. Δ > 0 \Delta > 0 Δ>0

地狱.
我是分两种情况的, 一种是 a > 0 a > 0 a>0, 一种是 a < 0 a < 0 a<0. 这样可以分辨出是 + Δ + \sqrt{\Delta } +Δ 还是 − Δ -\sqrt{\Delta } Δ

如若 a < 0 a < 0 a<0, 则可知答案为:
b + Δ − 2 a \dfrac{b + \sqrt{\Delta}}{-2a} 2ab+Δ

如若 a > 0 a > 0 a>0, 则可知答案为:
Δ − b 2 a \dfrac{\sqrt{\Delta} - b}{2a} 2aΔ b

  • 在这里有一个技巧, 就是不论怎样, 输出时, Δ \sqrt{\Delta} Δ 永远是正的(符号为+)

可以分两种情况:
1.第一种: 不需要写sqrt, 也就是 Δ \Delta Δ完全平方数时,

比较好处理, 首先需要判断 b + Δ b + \sqrt{\Delta} b+Δ 是否为 0 0 0. 如果是, 则直接输出 0 0 0; 否则输出最简分数.

其中, 一定要记住如果 ( b + Δ ) % ( 2 ∗ a ) = 0 (b + \sqrt{\Delta}) \% (2 * a) = 0 (b+Δ )%(2a)=0, 就直接输出一个整数.还要注意判断正负号.

2.第二种: 需要写sqrt, 很难.

首先, 先输出前面的内容, 也就是 − b 2 a -\dfrac{b}{2a} 2ab, 判断同上.

然后, 输出+, 代表符号.

接着, 找出三个变量, 也就是: x y Δ x 2 \dfrac{x}{y} \sqrt{\dfrac{\Delta}{x^2}} yxx2Δ 中的 x , y 和 Δ x 2 x, y和\dfrac{\Delta}{x^2} x,yx2Δ.其中, Δ x 2 \sqrt{\dfrac{\Delta}{x^2}} x2Δ 为最简平方根数.

接下来是 4 4 4种情况:

x = y x = y x=y, 只有 Δ x 2 \sqrt{\dfrac{\Delta}{x^2}} x2Δ ;

x % y = 0 x \% y = 0 x%y=0, 只有 x y Δ x 2 \dfrac{x}{y}\sqrt{\dfrac{\Delta}{x^2}} yxx2Δ

y % x = 0 y \% x = 0 y%x=0, 只有 Δ x 2 y \dfrac{\sqrt{\dfrac{\Delta}{x^2}}}{y} yx2Δ

其他情况, 输出 x × Δ x 2 y \dfrac{x \times \sqrt{\dfrac{\Delta}{x^2}}}{y} yx×x2Δ

完结撒花!!

C o d e : Code: Code:

  • 心脏病患者请勿观看
#include <bits/stdc++.h>
using namespace std;int T, M;
int a, b, c;int pd(int x) {for(int i = sqrt(x) + 1; i >= 1; --i) {if(x % (i * i) == 0) {return i;}}
}int main() {cin >> T >> M;while(T--) {cin >> a >> b >> c;int delta;delta = b * b - 4 * a * c;if(delta < 0) {cout << "NO";}else if(delta == 0) {if(b == 0) {cout << 0;}else if(a * b > 0) {a = abs(a);b = abs(b);cout << "-";if(b % (2 * a) == 0) {cout << b / 2 / a;}else {cout << b / __gcd(2 * a, b) << "/" << (2 * a) / __gcd(2 * a, b);}}else {a = abs(a);b = abs(b);if(b % (2 * a) == 0) {cout << b / 2 / a;}else {cout << b / __gcd(2 * a, b) << "/" << (2 * a) / __gcd(2 * a, b);}}}else {if(a < 0) {int mother = - 2 * a;int x = pd(delta);int y = delta / x / x;if(b == 0) {mother = abs(mother);if(y == 1) {if(x == mother) {cout << "1";}else if(x % mother == 0) {cout << x / mother;}else {cout << x / __gcd(x, mother) << "/" << mother / __gcd(x, mother);}}else {if(x == mother) {cout << "sqrt(" << y << ")";}else if(mother % x == 0) {cout << "sqrt(" << y << ")";cout << "/" << mother / x;}else if(x % mother == 0) {cout << x / mother << "*sqrt(" << y << ")";}else {cout << x / __gcd(x, mother) << "*sqrt(" << y << ")" << "/" << mother / __gcd(x, mother);}}}else if(y == 1) { // 不需要sqrt// 说明可以合并为同一个式子int son = - b - x;if(son == 0) {cout << 0;}else if(son * mother < 0) { // 如果分子分母同号.son = abs(son);mother = abs(mother);if(son % mother == 0) {cout << son / mother;}else {cout << son / __gcd(son, mother) << "/" << mother / __gcd(son, mother);}}else { // 如果分子分母异号.son = abs(son);mother = abs(mother);cout << "-";if(son % mother == 0) {cout << son / mother;}else {cout << son / __gcd(son, mother) << "/" << mother / __gcd(son, mother);}}}else { // 需要sqrt.// 1. 先输出前面的if(b > 0) { // 不需要负号b = abs(b);mother = abs(mother);if(b % mother == 0) {cout << b / mother;}else {cout << b / __gcd(b, mother) << "/" << mother / __gcd(b, mother);}}else { // 需要负号b = abs(b);mother = abs(mother);cout << "-";if(b % mother == 0) {cout << b / mother;}else {cout << b / __gcd(b, mother) << "/" << mother / __gcd(b, mother);}}// 2. 输出sqrt部分(不管怎样都是+)cout << "+";if(x == 1) { // 不需要输出前缀.cout << "sqrt(" << y << ")";cout << "/" << - 2 * a;}else {if(x == mother) {cout << "sqrt(" << y << ")";}else if(x % mother == 0) {cout << x / mother << "*sqrt(" << y << ")";}else if(mother % x == 0) {cout << "sqrt(" << y << ")";cout << "/" << mother / x;}else {cout << x / __gcd(x, mother);cout << "*sqrt(" << y << ")";cout << "/" << mother / __gcd(x, mother);}}}}else {int mother = 2 * a;int x = pd(delta);int y = delta / x / x;if(b == 0) {mother = abs(mother);if(y == 1) {if(x == mother) {cout << "1";}else if(x % mother == 0) {cout << x / mother;}else {cout << x / __gcd(x, mother) << "/" << mother / __gcd(x, mother);}}else {if(x == mother) {cout << "sqrt(" << y << ")";}else if(mother % x == 0) {cout << "sqrt(" << y << ")";cout << "/" << mother / x;}else if(x % mother == 0) {cout << x / mother << "*sqrt(" << y << ")";}else {cout << x / __gcd(x, mother) << "*sqrt(" << y << ")" << "/" << mother / __gcd(x, mother);}}}else if(y == 1) { // 不需要sqrt// 说明可以合并为同一个式子int son = - b + x;if(son == 0) {cout << 0;}else if(son * mother > 0) { // 如果分子分母同号.son = abs(son);mother = abs(mother);if(son % mother == 0) {cout << son / mother;}else {cout << son / __gcd(son, mother) << "/" << mother / __gcd(son, mother);}}else { // 如果分子分母异号.son = abs(son);mother = abs(mother);cout << "-";if(son % mother == 0) {cout << son / mother;}else {cout << son / __gcd(son, mother) << "/" << mother / __gcd(son, mother);}}}else { // 需要sqrt.// 1. 先输出前面的if(b * mother < 0) { // 不需要负号b = abs(b);mother = abs(mother);if(b % mother == 0) {cout << b / mother;}else {cout << b / __gcd(b, mother) << "/" << mother / __gcd(b, mother);}}else { // 需要负号b = abs(b);mother = abs(mother);cout << "-";if(b % mother == 0) {cout << b / mother;}else {cout << b / __gcd(b, mother) << "/" << mother / __gcd(b, mother);}}// 2. 输出sqrt部分(不管怎样都是+)cout << "+";if(x == 1) { // 不需要输出前缀.cout << "sqrt(" << y << ")";cout << "/" << 2 * a;}else {mother = 2 * a;if(x == mother) {cout << "sqrt(" << y << ")";}else if(x % mother == 0) {cout << x / mother << "*sqrt(" << y << ")";}else if(mother % x == 0) {cout << "sqrt(" << y << ")";cout << "/" << mother / x;}else {cout << x / __gcd(x, mother);cout << "*sqrt(" << y << ")";cout << "/" << mother / __gcd(x, mother);}}}}}cout << endl;}return 0;
}
http://www.lryc.cn/news/210447.html

相关文章:

  • 中颖单片机SH367309全套量产PCM,专用动力电池保护板开发资料
  • Android数据对象序列化原理与应用
  • Linux cp命令:复制文件和目录
  • SpringBoot 接收不到 post 请求数据与接收 post 请求数据
  • vue3学习(十四)--- vue3中css新特性
  • Python爬虫基础之Requests详解
  • C++求根节点到叶子节点数字之和
  • C++搜索二叉树
  • 软件工程17-18期末试卷
  • 课题学习(九)----阅读《导向钻井工具姿态动态测量的自适应滤波方法》论文笔记
  • 阿里云服务器—ECS快速入门
  • Hive简介及核心概念
  • CrossOver 23.6.0 虚拟机新功能介绍
  • (免费领源码)Java#Springboot#mysql农产品销售管理系统47627-计算机毕业设计项目选题推荐
  • centos更改yum源
  • React-快速搭建开发环境
  • 算法随想录算法训练营第四十六天| 583. 两个字符串的删除操作 72. 编辑距离
  • vue源码分析(五)——vue render 函数的使用
  • Maven第三章:IDEA集成与常见问题
  • 数据结构—线性实习题目(二)5迷宫问题(栈)
  • Nginx 的配置文件(负载均衡,反向代理)
  • 项目管理49个过程定义与作用、五大过程组
  • MySQL篇---第六篇
  • QA新人入职任务
  • 更新电脑显卡驱动的操作方法有哪些?
  • [Docker]三.Docker 部署nginx,以及映射端口,挂载数据卷
  • 【0基础学Java第三课】-- 运算符
  • unocss和tailwindcss css原子引擎
  • HIT_OS_LAB1 调试分析 Linux 0.00 引导程序
  • C语言每日一题(18)数组匹配