当前位置: 首页 > news >正文

【通信原理】第一章|绪论|信息度量和通信系统的性能指标

前言

那么这里博主先安利一些干货满满的专栏了!

首先是博主的高质量博客的汇总,这个专栏里面的博客,都是博主最最用心写的一部分,干货满满,希望对大家有帮助。

  • 高质量博客汇总

绪论

1. 信息和信息的度量

定义信息的度量。
I = log ⁡ a 1 P ( x ) = − log ⁡ a P ( x ) I=\log _{a} \frac{1}{P(x)}=-\log _{a} P(x) I=logaP(x)1=logaP(x)
a = 2 a=2 a=2当时候,信息量大单位为(bit),当 a = e a=e a=e当是时候,信息量的单位为(nat),若 a = 10 a=10 a=10,信息量大单位为哈特莱(Hartley)。

对于离散信源,M个波形等概率 P = 1 / M P=1/M P=1/M发送,且每个波形出现是独立的,即信源是无记忆的,则传送M进制波形之一的信息量为。
I = log ⁡ 2 1 P = log ⁡ 2 1 1 / M = log ⁡ 2 M I=\log _{2} \frac{1}{P}=\log _{2} \frac{1}{1 / M}=\log _{2} M I=log2P1=log21/M1=log2M
如果M是2的整数次幂,比如 M = 2 k M=2^k M=2k,则式子可以改写成 I = k I=k I=k

2. 通信系统主要性能指标

频带利用率。
η = R B B ( Baud  / H z ) \eta=\frac{R_{\mathrm{B}}}{B} \quad(\text { Baud } / \mathrm{Hz}) η=BRB( Baud /Hz)

η b = R b B ( b / ( s ⋅ H z ) ) \eta_{\mathrm{b}}=\frac{R_{\mathrm{b}}}{B} \quad(\mathrm{~b} /(\mathrm{s} \cdot \mathrm{Hz})) ηb=BRb( b/(sHz))
R B R_B RB为码原传输速率,简称传码率,也可以叫做波特率。

设每个码元的长度为 T B ( s ) T_B(s) TB(s),则有
R B = 1 T B ( B a u d ) R_B = \frac{1}{T_B} \quad (Baud) RB=TB1(Baud)
R b R_b Rb为信息传输速率,简称传信率,也可以叫做比特率。

因为一个M进制码元携带 l o g 2 M log_2M log2M比特的信息量,所以码元速率和信息速率有以下确定的关系,即。
R b = R B log ⁡ 2 M ( b / s ) R B = R b log ⁡ 2 M ( B a u d ) R_{\mathrm{b}}=R_{\mathrm{B}} \log _{2} M \quad(b/s) \\ R_{\mathrm{B}}=\frac{R_{\mathrm{b}}}{\log _{2} M} \quad (Baud) Rb=RBlog2M(b/s)RB=log2MRb(Baud)
如果二进制码元的持续时间为 T b T_b Tb,则 T b T_b Tb T B T_B TB有如下关系。
T B = T b ⋅ l o g 2 M T_B = T_b \cdot log_2M TB=Tblog2M
误码率。
P e = 错误码元数 传输总码元数 P_e = \frac{错误码元数}{传输总码元数} Pe=传输总码元数错误码元数
误信率。
P b = 错误比特数 传输总比特数 P_b = \frac{错误比特数}{传输总比特数} Pb=传输总比特数错误比特数

http://www.lryc.cn/news/210297.html

相关文章:

  • 基于STM32+OneNet设计的物联网智能鱼缸(2023升级版)
  • NET-MongoDB的安装使用
  • 简化geojson策略
  • 一个Binder的前生今世 (二):Binder进程和线程的创建
  • RocketMq源码分析(八)--消息消费流程
  • sql--索引使用
  • alibaba.fastjson的使用(三)-- Map、List ==》JSON字符串
  • pycharm 2023.2.3设置conda虚拟环境
  • 安卓Frida 脱壳
  • 【C】为什么7.0会被存储为6.99999
  • Framework -- 系统架构
  • 1.1 计算机安全概念
  • react中的函数柯里化
  • Unity点乘的实战案例1
  • Hive数据查询详解
  • 人工智能基础_机器学习008_使用正规方程_损失函数进行计算_一元一次和二元一次方程演示_sklearn线性回归演示---人工智能工作笔记0048
  • 【详细】Java网络通信 TCP、UDP、InetAddress
  • Linux(Centos7)操作记录
  • Vue全局事件总线实现任意组件间通信
  • linux-tools-$(uname -r) linux-headers-$(uname -r)工具安装:
  • hive sql,年月日 时分秒格式的数据,以15分钟为时间段,找出每一条数据所在时间段的上下界限时间值(15分钟分区)
  • C#学习系列之继承
  • PyTorch入门学习(六):神经网络的基本骨架使用
  • “体检报告健康解读技术传承人”授牌仪式圆满结束
  • 查询计算机GUID码
  • MediaPlayer+TextureView实现视频播放功能
  • webpack 优化
  • 保障 Golang 项目安全的最佳实践
  • PG物理备份与恢复之pg_basebackup
  • npm : 无法将“npm”项识别为 cmdlet、函数、脚本文件或可运行程序的名称。请检查名称的拼写,如果包括路径,请确保路径正确,然后再试一次。