当前位置: 首页 > news >正文

PyTorch基础(18)-- torch.stack()方法

一、方法详解

首先,看一下stack的直观解释,动词可以简单理解为:把……放成一堆、把……放成一摞。
在这里插入图片描述
有了对stack方法的直观感受,接下来,我们正式解析torch.stack方法。

PyTorch torch.stack() method joins (concatenates) a sequence of tensors (two or more tensors) along a new dimension. It inserts new dimension and concatenates the tensors along that dimension. This method joins the tensors with the same dimensions and shape. We could also use torch.cat() to join tensors But here we discuss the torch.stack() method.

torch.stack方法用于沿着一个新的维度 join(也可称为cat)一系列的张量(可以是2个张量或者是更多),它会插入一个新的维度,并让张量按照这个新的维度进行张量的cat操作。值得注意的是:张量序列中的张量必须要有相同的shape和dimension。

在这里插入图片描述

Parameters
tensors:张量序列,也就是要进行stack操作的对象,可以有很多个张量。
dim:按照dim的方式对这些张量进行stack操作,也就是你要按照哪种堆叠方式对张量进行堆叠。dim的取值范围为闭区间[0,输入Tensor的维数]
return
堆叠后的张量

只通过理论对方法进行解释说明是不够直观的,下面会通过大量的示例对torch.stack方法进行解析!

二、案例解析

2.1 案例1:2个一维tensor进行stack操作

  • 程序
 x = t.tensor([1,2,3,4])y = t.tensor([5,6,7,8])print(x.shape)print(y.shape)z1 = t.stack((x,y), dim=0)print(z1)print(z1.shape)z2 = t.stack((x,y), dim=1)print(z2)print(z2.shape)
  • 运行结果
torch.Size([4])
torch.Size([4])tensor([[1, 2, 3, 4],[5, 6, 7, 8]])
torch.Size([2, 4])tensor([[1, 5],[2, 6],[3, 7],[4, 8]])
torch.Size([4, 2])
  • 图解
    在这里插入图片描述

2.2 案例2:2个二维tensor进行stack操作

  • 程序
 x = t.tensor([[1,2,3],[4,5,6]])y = t.tensor([[7,8,9],[10,11,12]])print(x.shape)print(y.shape)z1 = t.stack((x,y), dim=0)print(z1)print(z1.shape)z2 = t.stack((x,y), dim=1)print(z2)print(z2.shape)z3 = t.stack((x,y), dim=2)print(z3)print(z3.shape)
  • 运行结果
torch.Size([2, 3])
torch.Size([2, 3])tensor([[[ 1,  2,  3],[ 4,  5,  6]],[[ 7,  8,  9],[10, 11, 12]]])
torch.Size([2, 2, 3])tensor([[[ 1,  2,  3],[ 7,  8,  9]],[[ 4,  5,  6],[10, 11, 12]]])
torch.Size([2, 2, 3])tensor([[[ 1,  7],[ 2,  8],[ 3,  9]],[[ 4, 10],[ 5, 11],[ 6, 12]]])
torch.Size([2, 3, 2])
  • 图解
    在这里插入图片描述

2.3 案例3:多个二维tensor进行stack操作

  • 程序
x = torch.tensor([[1,2,3],[4,5,6]])
y = torch.tensor([[7,8,9],[10,11,12]])
z = torch.tensor([[13,14,15],[16,17,18]])
print(x.shape)
print(y.shape)
print(z.shape)r1 = torch.stack((x,y,z),dim=0)
print(r1)
print(r1.shape)r2 = torch.stack((x,y,z),dim=1)
print(r2)
print(r2.shape)r3 = torch.stack((x,y,z),dim=2)
print(r3)
print(r3.shape)
  • 运行结果
torch.Size([2, 3])
torch.Size([2, 3])
torch.Size([2, 3])tensor([[[ 1,  2,  3],[ 4,  5,  6]],[[ 7,  8,  9],[10, 11, 12]],[[13, 14, 15],[16, 17, 18]]])
torch.Size([3, 2, 3])tensor([[[ 1,  2,  3],[ 7,  8,  9],[13, 14, 15]],[[ 4,  5,  6],[10, 11, 12],[16, 17, 18]]])
torch.Size([2, 3, 3])tensor([[[ 1,  7, 13],[ 2,  8, 14],[ 3,  9, 15]],[[ 4, 10, 16],[ 5, 11, 17],[ 6, 12, 18]]])
torch.Size([2, 3, 3])
  • 图解

2.4 案例4:2个三维tensor进行stack操作

  • 程序
x = torch.tensor([[[1,2,3],[4,5,6]],[[2,3,4],[5,6,7]]])
y = torch.tensor([[[7,8,9],[10,11,12]],[[8,9,10],[11,12,13]]])
print(x.shape)
print(y.shape)
z1 = torch.stack((x,y),dim=0)
print(z1)
print(z1.shape)
z2 = torch.stack((x,y),dim=1)
print(z2)
print(z2.shape)
z3 = torch.stack((x,y),dim=2)
print(z3)
print(z3.shape)
z4 = torch.stack((x,y),dim=3)
print(z4)
print(z4.shape)
  • 运行结果
torch.Size([2, 2, 3])
torch.Size([2, 2, 3])tensor([[[[ 1,  2,  3],[ 4,  5,  6]],[[ 2,  3,  4],[ 5,  6,  7]]],[[[ 7,  8,  9],[10, 11, 12]],[[ 8,  9, 10],[11, 12, 13]]]])
torch.Size([2, 2, 2, 3])tensor([[[[ 1,  2,  3],[ 4,  5,  6]],[[ 7,  8,  9],[10, 11, 12]]],[[[ 2,  3,  4],[ 5,  6,  7]],[[ 8,  9, 10],[11, 12, 13]]]])
torch.Size([2, 2, 2, 3])tensor([[[[ 1,  2,  3],[ 7,  8,  9]],[[ 4,  5,  6],[10, 11, 12]]],[[[ 2,  3,  4],[ 8,  9, 10]],[[ 5,  6,  7],[11, 12, 13]]]])
torch.Size([2, 2, 2, 3])tensor([[[[ 1,  7],[ 2,  8],[ 3,  9]],[[ 4, 10],[ 5, 11],[ 6, 12]]],[[[ 2,  8],[ 3,  9],[ 4, 10]],[[ 5, 11],[ 6, 12],[ 7, 13]]]])
torch.Size([2, 2, 3, 2])
  • 图解

参考文献

[1]https://blog.csdn.net/flyingluohaipeng/article/details/125034358
[2]https://www.geeksforgeeks.org/python-pytorch-stack-method/
[3]https://www.bing.com/search?q=torch.stack&form=ANNTH1&refig=653766bda2d540398dfb83d482cd33cd

http://www.lryc.cn/news/209690.html

相关文章:

  • 从lc560“和为 K 的子数组“带你认识“前缀和+哈希表“的解题思路
  • c:变参函数:汇编解析;va_list;marco 宏:__VA_ARGS__
  • eclipse安装教程(2021版)
  • 计算机网络重点概念整理-第二章 物理层【期末复习|考研复习】
  • 【计算机网络】从输入URL到页面都显示经历了什么??
  • [C++]——带你学习类和对象
  • Docker多平台、跨平台编译打包
  • LLM系列 | 22 : Code Llama实战(下篇):本地部署、量化及GPT-4对比
  • Nginx的进程结构实例演示
  • 【Nginx36】Nginx学习:SSI静态文件服务器端包含模块
  • StripedFly恶意软件框架感染了100万台Windows和Linux主机
  • 蓝桥杯每日一题2023.10.25
  • 【C++】详解map和set基本接口及使用
  • 如何学习 Linux 内核内存管理
  • 【计算机网络】(谢希仁第八版)第一章课后习题答案
  • Operator开发之operator-sdk入门
  • RabbitMQ生产者的可靠性
  • 集群节点批量执行 shell 命令
  • fl studio21.2水果软件怎么设置中文?
  • .NET CORE 3.1 集成JWT鉴权和授权2
  • nbcio-boot如何进行gitee第三方登录
  • 【C语言】字符函数、字符串函数与内存函数
  • 生成树协议:监控 STP 端口和交换机
  • 【黑产攻防道03】利用JS参数更新检测黑产的协议破解
  • 什么是web3.0?
  • 二、W5100S/W5500+RP2040树莓派Pico<DHCP>
  • 【开源】基于SpringBoot的天然气工程业务管理系统的设计和实现
  • 讯飞星火大模型V3.0 WebApi使用
  • 拥有DOM力量的你究竟可以干什么
  • GnuTLS recv error (-110): The TLS connection was non-properly terminated