条件期望3
条件期望例题—连续发生的事情
连续地做二项实验, 每一次成功概率为p.
当连续k次成功时, 停止实验.
求停止实验时做的总实验次数的期望.
解:
错误解法
设NkN_kNk为停止实验时做的总实验次数, 则
E[Nk]=E[E[Nk∣Nk−1]]=∑j=k−1∞E[Nk∣Nk−1=j]\begin{split} E[N_k] &= E[E[N_k|N_{k-1}]] \\ &=\sum_{j= k-1}^{\infin}E[N_k|N_{k-1}=j] \end{split} E[Nk]=E[E[Nk∣Nk−1]]=j=k−1∑∞E[Nk∣Nk−1=j]
因为
E[Nk∣Nk−1]=p⋅(NK−1+1)+(1−p)⋅E[Nk]E[N_k|N_{k-1}] = p\cdot(N_{K-1} +1) + (1-p)\cdot E[N_k] E[Nk∣Nk−1]=p⋅(NK−1+1)+(1−p)⋅E[Nk]
(一旦错了又得重开)
对两边去取期望
E[E[Nk∣Nk−1]]=E[Nk]=p⋅(E[Nk−1]+1)+(1−p)⋅E[Nk]E[E[N_k|N_{k-1}]] = E[N_k] = p \cdot (E[N_{k-1}] + 1) + (1-p) \cdot E[N_k] E[E[Nk∣Nk−1]]=E[Nk]=p⋅(E[Nk−1]+1)+(1−p)⋅E[Nk]
即
E[Nk]=E[Nk−1]+1E[N_k] = E[N_{k-1}] + 1 E[Nk]=E[Nk−1]+1
因为E[N1]=1pE[N_1] = \frac{1}{p}E[N1]=p1, 所以
E[N2]=1p+1↓E[Nn]=1p+(n−1)\begin{split} E[N_2] &= \frac{1}{p} + 1 \\ &\downarrow \\ E[N_n] &= \frac{1}{p} + (n-1) \end{split} E[N2]E[Nn]=p1+1↓=p1+(n−1)
易知上述解法的答案在直觉上是不成立的, 因为随着k的增大, E[Nk]E[N_k]E[Nk]的增长速度应该以非常快的速度增大, 而非仅仅是线性增长, 所以显然是错误的.
正确解法
E[Nk]=E[E[Nk∣Nk−1]]E[N_k] = E[E[N_k|N_{k-1}]] E[Nk]=E[E[Nk∣Nk−1]]
显然, 最要紧的是找出E[Nk∣Nk−1]E[N_k|N_{k-1}]E[Nk∣Nk−1]作为Nk−1N_{k-1}Nk−1的函数, 这个函数关系是什么
(一旦错了又得重开), 这个思路对的, 但(1)式是错的
E[Nk∣Nk−1]=p⋅(NK−1+1)+(1−p)⋅E[Nk](1)E[N_k|N_{k-1}] = p\cdot(N_{K-1} +1) + (1-p)\cdot E[N_k] \tag{1} E[Nk∣Nk−1]=p⋅(NK−1+1)+(1−p)⋅E[Nk](1)
应该是这样的思路
现在已经做了Nk−1次试验↙↘成功(概率p)失败(概率1−p)Nk=Nk−1+1Nk=Nk−1+1+Nk\begin{split} 现在已经做了&N_{k-1}次试验 \\ \swarrow&\searrow \\ 成功(概率p)\ \ \ \ \ \ &\ \ \ \ \ \ 失败(概率1-p) \\ N_k = N_{k-1} + 1\ \ \ \ \ &\ \ \ \ \ \ N_k = N_{k-1} + 1 + N_k \end{split} 现在已经做了↙成功(概率p) Nk=Nk−1+1 Nk−1次试验↘ 失败(概率1−p) Nk=Nk−1+1+Nk
所以(2)(2)(2)式才是正确的
E[Nk∣Nk−1]=p⋅(NK−1+1)+(1−p)⋅(NK−1+1+E[Nk])=NK−1+(1−p)⋅E[Nk](2)\begin{split} E[N_k|N_{k-1}] &= p\cdot(N_{K-1} +1) + (1-p)\cdot (N_{K-1} +1+E[N_k]) \\ &=N_{K-1} +(1-p)\cdot E[N_k] \tag{2} \end{split} E[Nk∣Nk−1]=p⋅(NK−1+1)+(1−p)⋅(NK−1+1+E[Nk])=NK−1+(1−p)⋅E[Nk](2)
其他的推导过程同上, 最终也是一个递归方程
E[Nk]=E[Nk−1]p+1pE[N_k] = \frac{E[N_{k-1}]}{p} + \frac{1}{p} E[Nk]=pE[Nk−1]+p1
最终的结果是
E[Nk]=1p+1p2+⋯+1pkE[N_k] = \frac{1}{p}+ \frac{1}{p^2} + \cdots + \frac{1}{p^k} E[Nk]=p1+p21+⋯+pk1
显然这一结果才是正确的结果, 直观上也更加准确.