当前位置: 首页 > news >正文

【智能大数据分析】实验1 MapReduce实验:单词计数

【智能大数据分析】实验1 MapReduce实验:单词计数

文章目录

  • 【智能大数据分析】实验1 MapReduce实验:单词计数
    • 一、实验目的
    • 二、实验要求
    • 三、实验原理
      • 1 MapReduce编程
      • 2 Java API解析
    • 四、实验步骤
      • 1 启动Hadoop
      • 2 验证HDFS上没有wordcount的文件夹
      • 3 上传数据文件到HDFS
      • 4 编写MapReduce程序
      • 5 使用命令将代码打包
      • 6 在Hadoop集群上提交jar文件来运行MapReduce作业

在我之前的一篇博客中:云计算中的大数据处理:尝试HDFS和MapReduce的应用有过类似的操作,具体不会的可以去这篇博客中看看。

一、实验目的

基于MapReduce思想,编写WordCount程序。

二、实验要求

1.理解MapReduce编程思想;

2.会编写MapReduce版本WordCount;

3.会执行该程序;

4.自行分析执行过程。

三、实验原理

MapReduce是一种计算模型,简单的说就是将大批量的工作(数据)分解(MAP)执行,然后再将结果合并成最终结果(REDUCE)。这样做的好处是可以在任务被分解后,可以通过大量机器进行并行计算,减少整个操作的时间。

适用范围:数据量大,但是数据种类小可以放入内存。

基本原理及要点:将数据交给不同的机器去处理,数据划分,结果归约。

理解MapReduce和Yarn:在新版Hadoop中,Yarn作为一个资源管理调度框架,是Hadoop下MapReduce程序运行的生存环境。其实MapRuduce除了可以运行Yarn框架下,也可以运行在诸如Mesos,Corona之类的调度框架上,使用不同的调度框架,需要针对Hadoop做不同的适配。

一个完成的MapReduce程序在Yarn中执行过程如下:

(1)ResourcManager JobClient向ResourcManager提交一个job。

(2)ResourcManager向Scheduler请求一个供MRAppMaster运行的container,然后启动它。

(3)MRAppMaster启动起来后向ResourcManager注册。

(4)ResourcManagerJobClient向ResourcManager获取到MRAppMaster相关的信息,然后直接与MRAppMaster进行通信。

(5)MRAppMaster算splits并为所有的map构造资源请求。

(6)MRAppMaster做一些必要的MR OutputCommitter的准备工作。

(7)MRAppMaster向RM(Scheduler)发起资源请求,得到一组供map/reduce task运行的container,然后与NodeManager一起对每一个container执行一些必要的任务,包括资源本地化等。

(8)MRAppMaster 监视运行着的task 直到完成,当task失败时,申请新的container运行失败的task。

(9)当每个map/reduce task完成后,MRAppMaster运行MR OutputCommitter的cleanup 代码,也就是进行一些收尾工作。

(10)当所有的map/reduce完成后,MRAppMaster运行OutputCommitter的必要的job commit或者abort APIs。

(11)MRAppMaster退出。

1 MapReduce编程

编写在Hadoop中依赖Yarn框架执行的MapReduce程序,并不需要自己开发MRAppMaster和YARNRunner,因为Hadoop已经默认提供通用的YARNRunner和MRAppMaster程序, 大部分情况下只需要编写相应的Map处理和Reduce处理过程的业务程序即可。

编写一个MapReduce程序并不复杂,关键点在于掌握分布式的编程思想和方法,主要将计算过程分为以下五个步骤:

(1)迭代。遍历输入数据,并将之解析成key/value对。

(2)将输入key/value对映射(map)成另外一些key/value对。

(3)依据key对中间数据进行分组(grouping)。

(4)以组为单位对数据进行归约(reduce)。

(5)迭代。将最终产生的key/value对保存到输出文件中。

2 Java API解析

(1)InputFormat:用于描述输入数据的格式,常用的为TextInputFormat提供如下两个功能:

数据切分: 按照某个策略将输入数据切分成若干个split,以便确定Map Task个数以及对应的split。

为Mapper提供数据:给定某个split,能将其解析成一个个key/value对。

(2)OutputFormat:用于描述输出数据的格式,它能够将用户提供的key/value对写入特定格式的文件中。

(3)Mapper/Reducer: Mapper/Reducer中封装了应用程序的数据处理逻辑。

(4)Writable:Hadoop自定义的序列化接口。实现该类的接口可以用作MapReduce过程中的value数据使用。

(5)WritableComparable:在Writable基础上继承了Comparable接口,实现该类的接口可以用作MapReduce过程中的key数据使用。(因为key包含了比较排序的操作)。

四、实验步骤

本实验主要分为,确认前期准备,编写MapReduce程序,打包提交代码。查看运行结果这几个步骤,详细如下:

1 启动Hadoop

在这里插入图片描述

2 验证HDFS上没有wordcount的文件夹

在这里插入图片描述

此时HDFS上应该是没有wordcount文件夹。

3 上传数据文件到HDFS

wordcount.txt:
在这里插入图片描述
在这里插入图片描述

4 编写MapReduce程序

主要编写Map和Reduce类,其中Map过程需要继承org.apache.hadoop.mapreduce包中Mapper类,并重写其map方法;Reduce过程需要继承org.apache.hadoop.mapreduce包中Reduce类,并重写其reduce方法。

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.mapreduce.lib.partition.HashPartitioner;import java.io.IOException;
import java.util.StringTokenizer;public class WordCount {public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable> {private final static IntWritable one = new IntWritable(1);private Text word = new Text();//map方法,划分一行文本,读一个单词写出一个<单词,1>public void map(Object key, Text value, Context context)throws IOException, InterruptedException {StringTokenizer itr = new StringTokenizer(value.toString());while (itr.hasMoreTokens()) {word.set(itr.nextToken());context.write(word, one);//写出<单词,1>}}}//定义reduce类,对相同的单词,把它们中的VList值全部相加public static class IntSumReducer extends Reducer<Text, IntWritable, Text, IntWritable> {private IntWritable result = new IntWritable();public void reduce(Text key, Iterable<IntWritable> values,Context context)throws IOException, InterruptedException {int sum = 0;for (IntWritable val : values) {sum += val.get();//相当于<Hello,1><Hello,1>,将两个1相加}result.set(sum);context.write(key, result);//写出这个单词,和这个单词出现次数<单词,单词出现次数>}}public static void main(String[] args) throws Exception {//主方法,函数入口Configuration conf = new Configuration();           //实例化配置文件类Job job = new Job(conf, "WordCount");             //实例化Job类job.setInputFormatClass(TextInputFormat.class);     //指定使用默认输入格式类TextInputFormat.setInputPaths(job, args[0]);      //设置待处理文件的位置job.setJarByClass(WordCount.class);               //设置主类名job.setMapperClass(TokenizerMapper.class);        //指定使用上述自定义Map类job.setCombinerClass(IntSumReducer.class);        //指定开启Combiner函数job.setMapOutputKeyClass(Text.class);            //指定Map类输出的,K类型job.setMapOutputValueClass(IntWritable.class);     //指定Map类输出的,V类型job.setPartitionerClass(HashPartitioner.class);       //指定使用默认的HashPartitioner类job.setReducerClass(IntSumReducer.class);         //指定使用上述自定义Reduce类job.setNumReduceTasks(Integer.parseInt(args[2]));  //指定Reduce个数job.setOutputKeyClass(Text.class);                //指定Reduce类输出的,K类型job.setOutputValueClass(Text.class);               //指定Reduce类输出的,V类型job.setOutputFormatClass(TextOutputFormat.class);  //指定使用默认输出格式类TextOutputFormat.setOutputPath(job, new Path(args[1]));    //设置输出结果文件位置System.exit(job.waitForCompletion(true) ? 0 : 1);    //提交任务并监控任务状态}
}

在这里插入图片描述

5 使用命令将代码打包

上述代码在编译运行的时候会进行报错:
在这里插入图片描述

主要是在Hadoop版本3.x中,Job构造函数已过时,需要使用Job.getInstance构造函数。另外,有一个潜在的问题是设置job.setOutputValueClassText.class,但您的Reduce类输出类型是IntWritable,这两者需要匹配。

下面是修改之后的代码:

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;import java.io.IOException;
import java.util.StringTokenizer;public class WordCount {public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable> {private final static IntWritable one = new IntWritable(1);private Text word = new Text();public void map(Object key, Text value, Context context) throws IOException, InterruptedException {StringTokenizer itr = new StringTokenizer(value.toString());while (itr.hasMoreTokens()) {word.set(itr.nextToken());context.write(word, one);}}}public static class IntSumReducer extends Reducer<Text, IntWritable, Text, IntWritable> {private IntWritable result = new IntWritable();public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {int sum = 0;for (IntWritable val : values) {sum += val.get();}result.set(sum);context.write(key, result);}}public static void main(String[] args) throws Exception {Configuration conf = new Configuration();Job job = Job.getInstance(conf, "WordCount");job.setJarByClass(WordCount.class);job.setMapperClass(TokenizerMapper.class);job.setCombinerClass(IntSumReducer.class);job.setReducerClass(IntSumReducer.class);job.setOutputKeyClass(Text.class);job.setOutputValueClass(IntWritable.class);FileInputFormat.addInputPath(job, new Path(args[0])); // 输入路径FileOutputFormat.setOutputPath(job, new Path(args[1])); // 输出路径System.exit(job.waitForCompletion(true) ? 0 : 1);}
}

下面是打包过程:

  • 在我们创建的java项目根目录下创建一个名为src的文件夹。

  • 将所有的Java源代码文件(.java)移动到src文件夹中。

  • 在项目根目录中创建一个名为Manifest.txt的文件,用于指定JAR文件的入口点。

  • Manifest.txt文件中,添加以下内容:

    Main-Class: <Main-Class>
    

    <Main-Class>替换为包含main方法的主类的完整类名,例如我的是SalesDriver

  • 回到项目根目录下,使用以下命令编译Java源代码并创建一个临时目录来保存编译后的类文件:

    mkdir classes
    javac -d classes src/*.java
    

    如果你在使用编译命令时出现程序包×××存在的问题,这个时候我们需要将Hadoop相关的jar文件添加到编译路径中才可以解决:

    javac -classpath /usr/local/servers/hadoop/share/hadoop/common/hadoop-common-3.1.3.jar:/usr/local/servers/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-client-core-3.1.3.jar -d classes src/*.java
    

    注意上面的命令是一个而不是多个。

  • 创建一个空的JAR文件,命名为WordCount.jar

    jar -cvf WordCount.jar -C classes/ .
    
  • 将编译后的类文件和Manifest.txt添加到JAR文件中:

    jar -uf WordCount.jar -C classes/ .jar -uf WordCount.jar Mainfest.txt 
    

到现在,我们的整个java项目就打包成功了。

6 在Hadoop集群上提交jar文件来运行MapReduce作业

我们将打包好的WordCount.jar使用如下命令提交到集群上面:

hadoop jar WordCount.jar WordCount /user/wordcount.txt /wordcount

顺利执行之后终端会打印如下信息:

在这里插入图片描述

然后我们查看我们的输出目录:

hdfs dfs -ls /wordcount

在这里插入图片描述

红框所示就是我们需要的结果,我们将其下载下来进行查看:

hdfs dfs -get /wordcount1/part-r-00000 /root/WordCount
vim part-r-00000

在这里插入图片描述
可以看见运行出我们想要的结果了,至此本次实验结束。

http://www.lryc.cn/news/208571.html

相关文章:

  • KV STUDIO的安装与实践(一)
  • matlab simulink ADRC控制样例
  • 我是如何走上测试管理岗的
  • 回溯法:雀魂启动!
  • 新的iLeakage攻击从Apple Safari窃取电子邮件和密码
  • Java练习题2021-1
  • 微信小程序input输入字母自动转大写不生效问题解决
  • jmeter报Java.NET.BindException: Address already in use: connect
  • 2023手工测试转自动化测试后,薪资可以达到多少?
  • 01 _ 为什么要学习数据结构和算法?
  • C语言 每日一题 PTA 10.27 day5
  • Unity Shader当用户靠近的时候会出现吃鸡一样的光墙
  • Xcode iOS app启用文件共享
  • STM32H750之FreeRTOS学习--------(二)任务的创建和删除
  • Kafka - 3.x Producer 生产者最佳实践
  • 对于多分类问题,使用深度学习(Keras)进行迁移学习提升性能
  • Python----break关键字对while...else结构的影响
  • js实现将文本生成二维码(腾讯云cos)
  • 机架式服务器介绍
  • 解决github有时能访问有时不能访问的问题2
  • Go实现网络通信
  • 在antd里面渲染MarkDown并且自定义一个锚点目录TOC(重点解决导航目录不跟随文档滚动的问题)
  • Linux MMC子系统 - 2.eMMC 5.1总线协议浅析
  • 时序预测 | Python实现ARIMA-LSTM自回归移动差分模型结合长短期记忆神经网络时间序列预测
  • 【Linux】部署单机OA项目及搭建spa前后端分离项目
  • 2023中国计算机大会:蚂蚁集团连发两支百万级科研基金
  • Knife4j使用教程(三) -- 实体类的配置注解(@ApiModel与@ApiModelProperty 的 认识与使用)
  • 计算机网络【CN】IPV4报文格式
  • SQL server数据库单用户模式如何退出
  • QT mqtt 在子线程中使用