当前位置: 首页 > news >正文

基于大数据的时间序列股价预测分析与可视化 - lstm 计算机竞赛

文章目录

  • 1 前言
  • 2 时间序列的由来
    • 2.1 四种模型的名称:
  • 3 数据预览
  • 4 理论公式
    • 4.1 协方差
    • 4.2 相关系数
    • 4.3 scikit-learn计算相关性
  • 5 金融数据的时序分析
    • 5.1 数据概况
    • 5.2 序列变化情况计算
  • 最后

1 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 毕业设计 大数据时间序列股价预测分析系统

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:3分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

2 时间序列的由来

提到时间序列分析技术,就不得不说到其中的AR/MA/ARMA/ARIMA分析模型。这四种分析方法的共同特点都是跳出变动成分的分析角度,从时间序列本身出发,力求得出前期数据与后期数据的量化关系,从而建立前期数据为自变量,后期数据为因变量的模型,达到预测的目的。来个通俗的比喻,大前天的你、前天的你、昨天的你造就了今天的你。

2.1 四种模型的名称:

  • AR模型:自回归模型(Auto Regressive model);
  • MA模型:移动平均模型(Moving Average model);
  • ARMA:自回归移动平均模型(Auto Regressive and Moving Average model);
  • ARIMA模型:差分自回归移动平均模型。
  • AR模型:

如果某个时间序列的任意数值可以表示成下面的回归方程,那么该时间序列服从p阶的自回归过程,可以表示为AR§:

在这里插入图片描述
AR模型利用前期数值与后期数值的相关关系(自相关),建立包含前期数值和后期数值的回归方程,达到预测的目的,因此成为自回归过程。这里需要解释白噪声,白噪声可以理解成时间序列数值的随机波动,这些随机波动的总和会等于0,例如,某饼干自动化生产线,要求每包饼干为500克,但是生产出来的饼干产品由于随机因素的影响,不可能精确的等于500克,而是会在500克上下波动,这些波动的总和将会等于互相抵消等于0。

3 数据预览


import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline

#准备两个数组
list1 = [6,4,8]
list2 = [8,6,10]#分别将list1,list2转为Series数组
list1_series = pd.Series(list1) 
print(list1_series)
list2_series = pd.Series(list2) 
print(list2_series)#将两个Series转为DataFrame,对应列名分别为A和B
frame = { 'Col A': list1_series, 'Col B': list2_series } 
result = pd.DataFrame(frame)result.plot()
plt.show()

在这里插入图片描述

4 理论公式

4.1 协方差

首先看下协方差的公式:

在这里插入图片描述

在这里插入图片描述

4.2 相关系数

计算出Cov后,就可以计算相关系数了,值在-1到1之间,越接近1,说明正相关性越大;越接近-1,则负相关性越大,0为无相关性
公式如下:

在这里插入图片描述

4.3 scikit-learn计算相关性

在这里插入图片描述


#各特征间关系的矩阵图
sns.pairplot(iris, hue=‘species’, size=3, aspect=1)

在这里插入图片描述

Andrews Curves 是一种通过将每个观察映射到函数来可视化多维数据的方法。
使用 Andrews Curves 将每个多变量观测值转换为曲线并表示傅立叶级数的系数,这对于检测时间序列数据中的异常值很有用。


plt.subplots(figsize = (10,8))
pd.plotting.andrews_curves(iris, ‘species’, colormap=‘cool’)

在这里插入图片描述
这里以经典的鸢尾花数据集为例

setosa、versicolor、virginica代表了三个品种的鸢尾花。可以看出各个特征间有交集,也有一定的分别规律。


#最后,通过热图找出数据集中不同特征之间的相关性,高正值或负值表明特征具有高度相关性:

fig=plt.gcf()
fig.set_size_inches(10,6)
fig=sns.heatmap(iris.corr(), annot=True, cmap='GnBu', linewidths=1, linecolor='k', \
square=True, mask=False, vmin=-1, vmax=1, \
cbar_kws={"orientation": "vertical"}, cbar=True)

在这里插入图片描述

5 金融数据的时序分析

主要介绍:时间序列变化情况计算、时间序列重采样以及窗口函数

5.1 数据概况


import pandas as pd

tm = pd.read_csv('/home/kesci/input/gupiao_us9955/Close.csv')
tm.head()

在这里插入图片描述

数据中各个指标含义:

  • AAPL.O | Apple Stock
  • MSFT.O | Microsoft Stock
  • INTC.O | Intel Stock
  • AMZN.O | Amazon Stock
  • GS.N | Goldman Sachs Stock
  • SPY | SPDR S&P; 500 ETF Trust
  • .SPX | S&P; 500 Index
  • .VIX | VIX Volatility Index
  • EUR= | EUR/USD Exchange Rate
  • XAU= | Gold Price
  • GDX | VanEck Vectors Gold Miners ETF
  • GLD | SPDR Gold Trust

8年期间价格(或指标)走势一览图

在这里插入图片描述

5.2 序列变化情况计算

  • 计算每一天各项指标的差异值(后一天减去前一天结果)
  • 计算pct_change:增长率也就是 (后一个值-前一个值)/前一个值)
  • 计算平均计算pct_change指标
  • 绘图观察哪个指标平均增长率最高
  • 计算连续时间的增长率(其中需要计算今天价格和昨天价格的差异)

计算每一天各项指标的差异值(后一天减去前一天结果)

在这里插入图片描述

计算pct_change:增长率也就是 (后一个值-前一个值)/前一个值)

在这里插入图片描述

计算平均计算pct_change指标
绘图观察哪个指标平均增长率最高

在这里插入图片描述
除了波动率指数(.VIX指标)增长率最高外,就是亚马逊的股价了!贝佐斯简直就是宇宙最强光头强

计算连续时间的增长率(其中需要计算今天价格和昨天价格的差异)


#第二天数据
tm.shift(1).head()

#计算增长率
rets = np.log(tm/tm.shift(1))
print(rets.tail().round(3))#cumsum的小栗子:
print('小栗子的结果:',np.cumsum([1,2,3,4]))#增长率做cumsum需要对log进行还原,用e^x
rets.cumsum().apply(np.exp).plot(figsize=(10,6))

在这里插入图片描述
以上是在连续时间内的增长率,也就是说,2010年的1块钱,到2018年已经变为10多块了(以亚马逊为例)

(未完待续,该项目为demo预测部分有同学需要联系学长完成)

最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

http://www.lryc.cn/news/208524.html

相关文章:

  • APP分发-CDN加速原理
  • 【Java 进阶篇】Java Request 继承体系详解
  • 通过阿里云创建accessKeyId和accessKeySecret
  • decapoda-research/llama-7b-hf 的踩坑记录
  • 计算机操作系统重点概念整理-第六章 输入输出I/O管理【期末复习|考研复习】
  • uniapp开发小程序—picker结合后台数据实现二级联动的选择
  • React Swiper.js使用(详细版)3D聚焦特效,自定义导航按钮等
  • 零基础Linux_23(多线程)线程安全+线程互斥(加锁)+死锁
  • 【算法|贪心算法系列No.5】leetcode409. 最长回文串
  • 【Linux】安装与配置虚拟机及虚拟机服务器坏境配置与连接---超详细教学
  • 机器学习实验一:KNN算法,手写数字数据集(使用汉明距离)(2)
  • docker应用部署---nginx部署的配置
  • Sql Server中的表组织和索引组织(聚集索引结构,非聚集索引结构,堆结构)
  • C++类对象反制机制实现_精简修改版
  • C#开发的IEnumerable接口
  • Redis详细安装教程
  • 36基于matlab的对分解层数和惩罚因子进行优化
  • 【Flutter】自定义分段选择器Slider
  • 【软考系统架构设计师】2023年系统架构师冲刺模拟习题之《软件工程》
  • 非遗主题网站的设计与实现基于PHP实现
  • YOLO目标检测——红外人员数据集【含对应voc、coco和yolo三种格式标签+划分脚本】
  • C++项目——云备份-⑧-客户端各模块实现
  • 分享一款基于 AI 的 Chrome 插件
  • Spring Authorization Server 1.1 扩展实现 OAuth2 密码模式与 Spring Cloud 的整合实战
  • 第二证券:AIGC概念活跃,焦点科技、三维通信涨停,万兴科技大涨
  • 7-4、S加减速转动实现【51单片机控制步进电机-TB6600系列】
  • RK3568-pcie接口
  • spring监听请求执行结束,移除当前ThreadLocal数据两种方法
  • 知识图谱--Jena基础操作和检索推理应用
  • GEE python——将GEE ASSETS中存储的影像或者矢量转化为数据格式XEE()