当前位置: 首页 > news >正文

如何绘制【逻辑回归】中threshold参数的学习曲线

threshold参数的意义是通过筛选掉低于threshold的参数,来对逻辑回归的特征进行降维。

首先导入相应的模块:

from sklearn.linear_model import LogisticRegression as LR
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
import matplotlib.pyplot as plt
import numpy as np
from sklearn.feature_selection import SelectFromModel # 从模型中选择特征
from sklearn.model_selection import cross_val_score # 交叉验证

导入乳腺癌数据集:

data = load_breast_cancer()
x = data.data
y = data.target

查看数据集特征矩阵的情况:

data.data.shape # (569, 30)

这个时候有30个特征。实例化一个逻辑回归模型,并使用交叉验证评估模型性能:

LR_ = LR(solver="liblinear", C=0.8, random_state=420)
cross_val_score(LR_, x, y, cv=10).mean() # 0.9508145363408522

使用select_from_model函数根据模型的权重系数或特征重要性等信息,选择重要的特征,并将选择后的特征矩阵返回给x_embedded:

X_embedded = SelectFromModel(LR_, threshold = 0.8, norm_order=1).fit_transform(x, y) # norm_order=1表示L1正则,模型会删除L1正则化后系数为0的特征,threshold表示阈值,当特征的系数小于阈值时,删除该特征
X_embedded.shape # (569, 9)

可以发现现在特征只剩下9个了。在这里我们设置了threshold = 0.8,也就是说小于0.8的权重系数被删除掉了。但是我们怎么知道设置哪个threshold值后得到的特征矩阵去训练模型,会得到最优的模型效果呢?

接下来我们开始绘制threshold的学习曲线,也就是不同的threshold值对模型效果的影响。在绘制之前,我们先训练模型,看一下权重系数的最大值,找到threshold的取值范围:

# 画threshod的学习曲线
LR_.fit(x, y) # 训练模型
LR_.coef_ # 查看训练后各变量的系数
LR_.coef_.shape # (1, 30)
LR_.coef_.max() # 1.9376881066687164

为了对比特征选择前和选择后模型的效果,我们设置了一组对照,同时确定了threshold的取值范围:

fullx = [] # 创建特征选择前的交叉验证的空列表
fsx = [] # 创建特征选择后的交叉验证的空列表
threshold = np.linspace(0, abs(LR_.fit(x, y).coef_).max(), 20) # 从0到最大系数之间取20个数

接下来绘制函数图像:

k = 0
for i in threshold:x_embedded = SelectFromModel(LR_, threshold=i).fit_transform(x, y) # threshold表示阈值,当特征的系数小于阈值时,删除该特征。此行代码是形成新的特征矩阵fullx.append(cross_val_score(LR_, x, y, cv=5).mean()) # 特征选择前进行交叉验证fsx.append(cross_val_score(LR_, x_embedded, y, cv=5).mean()) # 特征选择后进行交叉验证print((threshold[k], x_embedded.shape[1])) # 打印每次循环取到的阈值和降维后的特征数k += 1
plt.figure(figsize=(20, 5))
plt.plot(threshold, fullx, label="full")
plt.plot(threshold, fsx, label="feature selection")
plt.xticks(threshold)
plt.legend()
plt.show()

结果如下:

由图可知,随着threshold的值逐渐变大,被删除的特征越多,模型效果越差。这不是我们想要的结果,因此我们将范围缩小,将threshold的取值范围缩小(0,0.1),再来跑一下模型:

fullx = [] # 创建特征选择前的交叉验证的空列表
fsx = [] # 创建特征选择后的交叉验证的空列表
threshold = np.linspace(0, 0.1, 20) # 从0到最大系数之间取20个数
k = 0
for i in threshold:x_embedded = SelectFromModel(LR_, threshold=i).fit_transform(x, y) # threshold表示阈值,当特征的系数小于阈值时,删除该特征。此行代码是形成新的特征矩阵fullx.append(cross_val_score(LR_, x, y, cv=5).mean()) # 特征选择前进行交叉验证fsx.append(cross_val_score(LR_, x_embedded, y, cv=5).mean()) # 特征选择后进行交叉验证print((threshold[k], x_embedded.shape[1])) # 打印每次循环取到的阈值和降维后的特征数k += 1
plt.figure(figsize=(20, 5))
plt.plot(threshold, fullx, label="full")
plt.plot(threshold, fsx, label="feature selection")
plt.xticks(threshold)
plt.legend()
plt.show()

结果如下:

可以发现,当threshold取0.0053时,模型可以获得最好的效果。

http://www.lryc.cn/news/208407.html

相关文章:

  • 4.1 数据库安全性概述
  • tftp服务的搭建
  • c语言简介
  • OpenLayers.js 入门教程:打造互动地图的入门指南
  • 黑马头条:app端文章查看
  • 常见使用总结篇(一)
  • 【软考系统架构设计师】2023年系统架构师冲刺模拟习题之《数据库系统》
  • 北邮22级信通院数电:Verilog-FPGA(7)第七周实验(1):带使能端的38译码器全加器(关注我的uu们加群咯~)
  • SIT3491ISO具有隔离功能,256 节点,全双工 RS422/RS485 芯片
  • 在windows服务器上部署一个单机项目以及前后端分离项目
  • 使用jdbc技术,在数据库中存储大数据对象(使用字节IO流读取图片等给blob等二进制类型数据赋值)
  • 统计学习方法 支持向量机(下)
  • 【python】如何注释
  • C++——C++入门(二)
  • 容联七陌百度营销通BCP解决方案,让营销更精准
  • Transformer模型 | 用于目标检测的视觉Transformers训练策略
  • 贪心区间类题目
  • npm改变npm缓存路径和改变环境变量
  • string到QString出现中文乱码
  • 【Linux精讲系列】——yum软件包管理
  • 浅谈一下Vue3的TreeShaking特性
  • 【牛牛送书 | 第二期】《ChatGPT 驱动软件开发:AI 在软件研发全流程中的革新与实践》
  • Qt基础之三十九:Qt Creator调试技巧
  • Docker Nginx安装使用以及踩坑点总结
  • 单位建数字档案室的意义和作用
  • JavaWeb——关于servlet种mapping地址映射的一些问题
  • NTRU 加密方案
  • 第一章前端开发ES6基础
  • 【算法练习Day30】无重叠区间 划分字母区间合并区间
  • Linux部署Redis哨兵集群 一主两从三哨兵(这里使用Redis6,其它版本类似)