当前位置: 首页 > news >正文

深度学习与计算机视觉(一)

文章目录

    • 计算机视觉与图像处理的区别
    • 人工神经元
    • 感知机 - 分类任务
    • Sigmoid神经元/对数几率回归
    • 对数损失/交叉熵损失函数
    • 梯度下降法- 极小化对数损失函数
    • 线性神经元/线性回归
      • 均方差损失函数-线性回归常用损失函数
      • 使用梯度下降法训练线性回归模型
      • 线性分类器
        • 多分类器的决策面
      • softmax Regression
      • 训练softmax regression
      • 交叉熵损失
      • 解决参数冗余
      • 训练softmax Classifier
      • 混淆矩阵
      • 合页(铰链)损失

计算机视觉与图像处理的区别

  • 图像处理得到的结果是处理后的图像,图像处理的目的是改善图像的质量

    • 图像增强
    • 图像复原
  • 计算机视觉得到的结果可能是一个符号、一堆数据、一个知识

    • 人脸识别
    • 人脸比对
  • 传统的图像识别的机器学习方法的一般流程包括:

    • 特征提取→数据
    • 数据→机器学习
  • 为什么要提取图像的特征

    • 提取有利于识别的信息,抑制与识别无关的或者对识别有干扰的信息
    • 把不同尺度的图像映射到一个统一的特征空间,便于应用机器学习算法。
  • 机器学习的框架:D数据,A算法,H假设空间,h* H中最好的假设(真实误差最小的假设)
    在这里插入图片描述

  • 概率近似正确
    在这里插入图片描述

人工神经元

在这里插入图片描述

f:响应函数/激活函数一般都是非线性的函数,且一般都单调递增;常用的激活函数包括以下:

在这里插入图片描述
在这里插入图片描述

因为f是单调递增的函数,,如果 w>0,则,说明前一个神经元对后一个神经元有激活的作用;如果w<0 ,说明前一个神经元对后一个神经元有抑制作用。

感知机 - 分类任务

在这里插入图片描述
在这里插入图片描述

  • 感知机算法在线性可分的情况下,一定可以收敛,也就是一定可以找到一个能正确分类所有样本的分类函数
  • 但是同一个样本集,有可能会得到不同的解
    • 不同的初始值,不同的样本处理次序产生的结果不同
    • 不能得到全局最优的解
  • 线性不可分的时候,算法会失败

感知机的算法

在这里插入图片描述

损失函数:不能处处可导

在这里插入图片描述
在这里插入图片描述

解决方法:次梯度

Sigmoid神经元/对数几率回归

只有激活函数的不同,sigmoid处处连续可导,输出的是对数几率
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

对数损失/交叉熵损失函数

损失函数通过比较模型对样本X的预测结果与样本的真实类别y之间的差异,计算损失,差异越大,损失越大,差异越小,损失越小。

在这里插入图片描述
在这里插入图片描述

梯度下降法- 极小化对数损失函数

在这里插入图片描述

线性神经元/线性回归

神经元有两个部分组成:收集信号的过程和激活的过程,收集信号如果是使用线性过程(累加)就是线性神经元。至于收集到的信号能不能激活下一个神经元,要看激活函数的过程,这个过程一般不是线性的。

均方差损失函数-线性回归常用损失函数

在这里插入图片描述

使用梯度下降法训练线性回归模型

是对w,b进行更新

在这里插入图片描述
一元导数与微分的关系: d f / d x = f ′ 一元导数与微分的关系:df/dx=f' 一元导数与微分的关系:df/dx=f
全微分: d F = ( α F / α x ) d x + ( α F / α y ) d y 全微分:dF=(αF/αx) dx+(αF/αy) dy 全微分:dF=(αF/αx)dx+(αF/αy)dy
在这里插入图片描述

线性分类器

α ∗ β = ∣ α ∣ ∗ ∣ β ∣ c o s < α , β > ( α , β 为向量),其中 ∣ β ∣ c o s < α , β > 称为 β 在 α 上的投影 α*β=|α|*|β|cos<α,β>(α,β为向量),其中|β|cos<α,β>称为β在α上的投影 αβ=αβcos<αβ>αβ为向量),其中βcos<αβ>称为βα上的投影
在这里插入图片描述

多分类器的决策面

决策面是可以把各种分类分开的一个面,在三级分类中,决策面应该在超平面的角平分线处划分
在这里插入图片描述

softmax Regression

在这里插入图片描述

  • 这种argmax会把打分最高的结果设为1,其他的结果设为0;但是这种投影的坏处在于只看得到分类,看不到分类的置信为多少,所以引入了softmax Regression( e z 变成正数,正数加和为分母,求概率 e^z变成正数,正数加和为分母,求概率 ez变成正数,正数加和为分母,求概率

在这里插入图片描述
在这里插入图片描述

softmax的决策规则就是:寻找概率最大的作为分类的输出,又因为e函数是单调递增的,所以只要z最大,则概率就会最大。

训练softmax regression

在这里插入图片描述

这里要特别注意,这里计算损失函数的那个概率,是真实样本所对应的概率,不是预测值的那个概率

在这里插入图片描述

训练过程

在这里插入图片描述

交叉熵损失

在这里插入图片描述
在这里插入图片描述

解决参数冗余

可以使用一个正则化项:选择损失函数小且Ω也小的

在这里插入图片描述

训练softmax Classifier

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

混淆矩阵

在这里插入图片描述

对角线上的表示第k个类别的精度,混淆矩阵可以清晰的看到哪一个类别的分类情况较好(精度高),哪一个类别的分类情况不好(精度第),以及具体的分类情况是什么

合页(铰链)损失

在这里插入图片描述
在这里插入图片描述

http://www.lryc.cn/news/207309.html

相关文章:

  • 【vector题解】杨辉三角 | 删除有序数组中的重复项 | 只出现一次的数字Ⅱ
  • 金字塔切分注意力模块PSA学习笔记 (附代码)
  • Jenkins自动化测试
  • python 字典dict和列表list的读取速度问题, range合并
  • 测试用例的设计方法(全):等价类划分方法
  • Office技巧(持续更新)(Word、Excel、PPT、PowerPoint、连续引用、标题、模板、论文)
  • Java实现ORM第一个api-FindAll
  • HFSS笔记——求解器和求解分析
  • jenkins配置gitlab凭据
  • 0基础学习PyFlink——用户自定义函数之UDTF
  • 【Java 进阶篇】Java Request 原理详解
  • 13 结构性模式-装饰器模式
  • 支持向量机(SVM)
  • Rabbitmq----分布式场景下的应用
  • springboot + redis实现签到与统计功能
  • Redis | 数据结构(02)SDS
  • Linux C语言开发-D7D8运算符
  • redis 配置主从复制,哨兵模式案例
  • Python---练习:使用for循环实现用户名+密码认证
  • react中使用jquery 语法
  • 服务器中了360后缀勒索病毒怎么解决,勒索病毒解密,数据恢复
  • 使用字节流读取文件中的数据的几种方式
  • Android WMS——概述(一)
  • Node编写获取用户信息接口
  • 【从0到1设计一个网关】自研网关的设计要点以及架构设计
  • 论文-分布式-分布式计算|容错-分布式控制下的自稳定系统
  • C#压缩图片的方法
  • 安装 fcitx + 搜狗/谷歌输入法 之后导致 死机,重启后黑屏只有鼠标可以移动
  • Maven项目转为SpringBoot项目
  • C语言之预处理