当前位置: 首页 > news >正文

用Python做数据分析之数据筛选及分类汇总

1、按条件筛选(与,或,非)
为数据筛选,使用与,或,非三个条件配合大于,小于和等于对数据进行筛选,并进行计数和求和。与 excel 中的筛选功能和 countifs 和 sumifs 功能相似。
Excel 数据目录下提供了“筛选”功能,用于对数据表按不同的条件进行筛选。Python 中使用 loc 函数配合筛选条件来完成筛选功能。配合 sum 和 count 函数还能实现 excel 中 sumif 和 countif 函数的功能。

1)使用“与”条件进行筛选
条件是年龄大于 25 岁,并且城市为 beijing。筛选后只有一条数据符合要求。
1#使用“与”条件进行筛选
2df_inner.loc[(df_inner[‘age’] > 25) & (df_inner[‘city’] == ‘beijing’), [‘id’,‘city’,‘age’,‘category’,‘gender’]]

2)使用“或”条件进行筛选
年龄大于 25 岁或城市为 beijing。筛选后有 6 条数据符合要求。
1#使用“或”条件筛选
2df_inner.loc[(df_inner[‘age’] > 25) | (df_inner[‘city’] == ‘beijing’), [‘id’,‘city’,‘age’,‘category’,‘gender’]].sort
3([‘age’])

3)求和
在前面的代码后增加 price 字段以及 sum 函数,按筛选后的结果将 price 字段值进行求和,相当于 excel 中 sumifs 的功能。
1 #对筛选后的数据按 price 字段进行求和
2 df_inner.loc[(df_inner[‘age’] > 25) | (df_inner[‘city’] == ‘beijing’),
3 [‘id’,‘city’,‘age’,‘category’,‘gender’,‘price’]].sort([‘age’]).price.sum()

4)使用“非”条件进行筛选
城市不等于 beijing。符合条件的数据有 4 条。将筛选结果按 id 列进行排序。
1#使用“非”条件进行筛选
2df_inner.loc[(df_inner[‘city’]
!= ‘beijing’), [‘id’,‘city’,‘age’,‘category’,‘gender’]].sort([‘id’])

在前面的代码后面增加 city 列,并使用 count 函数进行计数。相当于 excel 中的 countifs 函数的功能。
1#对筛选后的数据按 city 列进行计数
2df_inner.loc[(df_inner[‘city’]
!= ‘beijing’), [‘id’,‘city’,‘age’,‘category’,‘gender’]].sort([‘id’]).city.count()

还有一种筛选的方式是用 query 函数。下面是具体的代码和筛选结果。
1#使用 query 函数进行筛选
2df_inner.query(‘city == [‘beijing’, ‘shanghai’]’)

在前面的代码后增加 price 字段和 sum 函数。对筛选后的 price 字段进行求和,相当于 excel 中的 sumifs 函数的功能。
1 #对筛选后的结果按 price 进行求和
2 df_inner.query(‘city == [‘beijing’, ‘shanghai’]’).price.sum()
3 12230

2、数据汇总
接下来是对数据进行分类汇总,Excel 中使用分类汇总和数据透视可以按特定维度对数据进行汇总,python 中使用的主要函数是 groupby 和 pivot_table。下面分别介绍这两个函数的使用方法。

1)分类汇总
Excel 的数据目录下提供了“分类汇总”功能,可以按指定的字段和汇总方式对数据表进行汇总。Python 中通过 Groupby 函数完成相应的操作,并可以支持多级分类汇总。
Groupby 是进行分类汇总的函数,使用方法很简单,制定要分组的列名称就可以,也可以同时制定多个列名称,groupby 按列名称出现的顺序进行分组。同时要制定分组后的汇总方式,常见的是计数和求和两种。
1 #对所有列进行计数汇总
2 df_inner.groupby(‘city’).count()

可以在 groupby 中设置列名称来对特定的列进行汇总。下面的代码中按城市对 id 字段进行汇总计数。
1 #对特定的 ID 列进行计数汇总
2 df_inner.groupby(‘city’)[‘id’].count()
3 city
4 beijing 2
5 guangzhou 1
6 shanghai 2
7 shenzhen 1
8 Name: id, dtype: int64

在前面的基础上增加第二个列名称,分布对 city 和 size 两个字段进行计数汇总。
1 #对两个字段进行汇总计数
2 df_inner.groupby([‘city’,‘size’])[‘id’].count()
3 city size
4 beijing A 1
5 F 1
6 guangzhou A 1
7 shanghai A 1
8 B 1
9 shenzhen C 1
10 Name: id, dtype: int64

除了计数和求和外,还可以对汇总后的数据同时按多个维度进行计算,下面的代码中按城市对 price 字段进行汇总,并分别计算 price 的数量,总金额和平均金额。
1 #对 city 字段进行汇总并计算 price 的合计和均值。
2 df_inner.groupby(‘city’)[‘price’].agg([len,np.sum, np.mean])

2)数据透视
Excel 中的插入目录下提供“数据透视表”功能对数据表按特定维度进行汇总。Python 中也提供了数据透视表功能。通过 pivot_table 函数实现同样的效果。
数据透视表也是常用的一种数据分类汇总方式,并且功能上比 groupby 要强大一些。下面的代码中设定 city 为行字段,size 为列字段,price 为值字段。分别计算 price 的数量和金额并且按行与列进行汇总。
1 #数据透视表
2pd.pivot_table(df_inner,index=[‘city’],values=[‘price’],columns=[‘size’],aggfunc=[len,np.sum],fill_value=0,margins=True)

文章来源:网络 版权归原作者所有
上文内容不用于商业目的,如涉及知识产权问题,请权利人联系小编,我们将立即处理

http://www.lryc.cn/news/206561.html

相关文章:

  • RabbitMQ高级篇 笔记
  • javaEE -9(7000字详解TCP/IP协议)
  • 在mybatis的xml中使用枚举来做判断条件
  • scala集合的partition方法使用
  • 18 Transformer 的动态流程
  • Android Studio新功能-设备镜像Device mirroring-在电脑侧显示手机实时画面并可控制
  • MySQL身份验证绕过漏洞
  • 0基础学习PyFlink——不可以用UDTAF装饰器装饰function的原因分析
  • Spring Boot Endpoints:端点
  • 漏洞复现--用友 畅捷通T+ .net反序列化RCE
  • PHP 共享茶室棋牌室无人软硬件结合开发小程序系统的开发优势
  • kibana监控
  • 基于 ARM+FPGA+AD平台的多类型同步信号采集仪开发及试验验证(二)板卡总体设计
  • uniapp: 本应用使用HBuilderX x.x.xx 或对应的cli版本编译,而手机端SDK版本是 x.x.xx。不匹配的版本可能造成应用异常。
  • sqoop和flume简单安装配置使用
  • 什么是React Router?它的作用是什么?
  • 界面控件DevExtreme v23.1 - UI组件 UI模板库增强
  • Fedora Linux 38下Mariadb数据库设置utf8mb4字符编码
  • 【单元测试】--高级主题
  • 面向对象程序设计(2023年10月)
  • 常用正在表达式
  • ES6初步了解Map对象(含十种方法)
  • 推荐一款可以识别m3u8格式ts流批量下载并且合成mp4视频的chrome插件——猫抓
  • 文本处理方法及其在NLP中的应用
  • html文字一行时靠右,多行时靠左
  • Stable-diffusion-webui
  • Python中的文件操作和异常处理
  • KF-GINS 和 OB-GINS 的 Earth类 和 Rotation 类
  • 2017年亚太杯APMCM数学建模大赛B题喷雾轨迹规划问题求解全过程文档及程序
  • 柏拉图式爱情是同性之爱,绘画是理念世界的二次模仿