当前位置: 首页 > news >正文

LeetCode 剑指 Offer 64. 求1+2+…+n

求 1+2+…+n ,要求不能使用乘除法、for、while、if、else、switch、case等关键字及条件判断语句(A?B:C)。

示例 1:

输入: n = 3
输出: 6

限制:

1 <= n <= 10000

解法一:利用逻辑运算符的短路:

class Solution {
public:int sumNums(int n) {n && (n += sumNums(n - 1));return n;}
};

此算法时间复杂度为O(n),空间复杂度为O(n)。

解法二:利用虚函数求解:

class base;
vector<base *> arr;class base {
public:virtual int plus(int i) {return 0;}
};class derived : public base {
public:virtual int plus(int i) override {return i + arr[!!i]->plus(i - 1);}
};class Solution {
public:int sumNums(int n) {arr.push_back(new base());arr.push_back(new derived());return arr[!!n]->plus(n);}
};

此算法时间复杂度为O(n),空间复杂度为O(n)。

解法三:纯C环境下没有虚函数,可以使用函数指针代替:

vector<int (*)(int)> funcArr;int sum(int i) {return i + funcArr[!!(i - 1)](i - 1);
}int sumTerminator(int i) {return i;
}class Solution {
public:Solution() {funcArr.push_back(sumTerminator);funcArr.push_back(sum);}int sumNums(int n) {return funcArr[!!n](n);}
};

此算法时间复杂度为O(n),空间复杂度为O(n)。

解法四:利用static成员:

class Solution {
public:Solution() {sum += i;++i;}int sumNums(int n) {i = 1;sum = 0;vector<Solution *> temp;for (int i = 0; i < n; ++i) {temp.push_back(new Solution);}return sum;}static int i;static int sum;
};int Solution::i = 1;
int Solution::sum = 0;

此算法时间复杂度为O(n),空间复杂度为O(n)。

解法五:利用模板,在编译期计算出结果,但这种方式需要输入是constexpr的:

class Solution {
public:template<int N> struct ans {enum {sum = N + ans<N - 1>::sum};};template<> struct ans<1> {enum {sum = 1};};int sumNums() {return ans<5>::sum;    // 模板参数需要是constexpr的}
};

此算法时间复杂度为O(1),空间复杂度为O(1)。

解法六:将enum改为const static int,在较老的不支持类内const static的编译器上,常用enum代替const static,这种方法也需要模板参数是constexpr的:

class Solution {
public:template<int N> struct ans {const static int sum = N + ans<N-1>::sum;};template<> struct ans<1> {const static int sum = 1;};int sumNums() {return ans<3>::sum;}
};

此算法时间复杂度为O(1),空间复杂度为O(1)。

解法七:利用数组大小,根据求和公式sum = i(i+1)/2

class Solution {
public:int sumNums(int i) {bool arr[i][i+1];return sizeof(arr) >> 1;}
};

此算法时间复杂度为O(n),空间复杂度为O(n)。

解法八:对于相乘的两个数A和B,将B转换为二进制,如果B中的第i位为1,这位1对结果的贡献为A * (1 << i),这个方法也被称作俄罗斯农民乘法,经常被用于两数相乘取模的场景,如果两数相乘已经超过数据范围,但取模后不会超过,我们就可以利用这个方法来拆位取模计算贡献,保证每次运算都在数据范围内。将其应用到求和公式:

class Solution {
public:int sumNums(int i) {int a = i, b = i + 1;int ans = 0;while (b) {if (b & 1) {ans += a;}b >>= 1;a <<= 1;}return ans >> 1;}
};

但是题目要求不能使用while循环,由于题目要求中对输入有限制,n最大为10000,因此最多循环14次,我们把循环中内容写14次即可:

class Solution {
public:int sumNums(int i) {int a = i, b = i + 1;int ans = 0;(b & 1) && (ans += a);b >>= 1;a <<= 1;(b & 1) && (ans += a);b >>= 1;a <<= 1;(b & 1) && (ans += a);b >>= 1;a <<= 1;(b & 1) && (ans += a);b >>= 1;a <<= 1;(b & 1) && (ans += a);b >>= 1;a <<= 1;(b & 1) && (ans += a);b >>= 1;a <<= 1;(b & 1) && (ans += a);b >>= 1;a <<= 1;(b & 1) && (ans += a);b >>= 1;a <<= 1;(b & 1) && (ans += a);b >>= 1;a <<= 1;(b & 1) && (ans += a);b >>= 1;a <<= 1;(b & 1) && (ans += a);b >>= 1;a <<= 1;(b & 1) && (ans += a);b >>= 1;a <<= 1;(b & 1) && (ans += a);b >>= 1;a <<= 1;(b & 1) && (ans += a);b >>= 1;a <<= 1;return ans >> 1;}
};

此算法时间复杂度为O(lgn),空间复杂度为O(1)。

http://www.lryc.cn/news/20567.html

相关文章:

  • Mapper代理开发
  • 为什么在连接mysql时,设置 SetConnMaxIdleTime 没有作用
  • 嵌入式开发利器
  • Qt 的QString类的使用
  • django项目部署(腾讯云服务器centos)
  • 计算机网络笔记、面试八股(一)——TCP/IP网络模型
  • 51单片机入门 - 简短的位运算实现扫描矩阵键盘
  • Mr. Cappuccino的第45杯咖啡——Kubernetes之部署SpringBoot项目
  • vscode在远程服务器提交git的时候无需每次都要输入账号密码的配置
  • 【Spring 基础】
  • 2023年全国最新机动车签字授权人精选真题及答案5
  • 5138: 数字游戏
  • 阅读笔记9——DenseNet
  • PowerAutomation获取邮件附件并删除这个邮件方法
  • websocket报错集锦-不断更新中
  • Spring Cloud Nacos源码讲解(七)- Nacos客户端服务订阅机制的核心流程
  • 【华为OD机试模拟题】用 C++ 实现 - 对称美学(2023.Q1)
  • Go语言内存管理详解-学习笔记
  • Geospatial Data Science (4): Spatial weights
  • JUC-Synchronized相关内容
  • 【c++】文件操作(文本文件、二进制文件)
  • 带你了解IP报警柱的特点
  • 一步步教你电脑变成服务器,tomcat的花生壳设置(原创)
  • Python 卷积神经网络 ResNet的基本编写方法
  • 【索引】什么是索引
  • 【算法刷题】动态规划算法题型及方法归纳
  • PolarDB数据库的CSN机制
  • 使用kubeadm 部署kubernetes 1.26.1集群 Calico ToR配置
  • Servlet笔记(11):Servletcontext对象
  • EM算法是什么