当前位置: 首页 > news >正文

cv::solvePnP使用方法及注意点详解(OpenCV/C++)

cv::solvePnP(objectPoints, imagePoints, cameraMatrix, distCoeffs, rvec, tvec, useExtrinsicGuess, flags);

1、参数说明:

  • objectPoints:一个 vector<cv::Point3f>,包含了在世界坐标系中的三维点的坐标,至少需要4个点。
  • imagePoints:一个 vector<cv::Point2f>,包含了对应的图像上的二维点的坐标,与 objectPoints 中的点一一对应。
  • cameraMatrix:相机的内参数矩阵,类型为 cv::Mat,一般为 3x3 的浮点数矩阵。
  • distCoeffs:相机的畸变系数,类型为 cv::Mat,一般为 4x1 或 5x1 的浮点数矩阵。
  • rvec:输出的旋转向量,类型为 cv::Mat,是大小为 3x1 的浮点数矩阵。
  • tvec:输出的平移向量,类型为 cv::Mat,是大小为 3x1 的浮点数矩阵。
  • useExtrinsicGuess:一个布尔值,表示是否使用可选的旋转和平移向量的初始猜测。默认为 false。
  • flags:一个用于控制函数行为的选项标志,默认为 0。

        函数返回:

  • 成功返回 true,失败返回 false。

2、使用说明:

objectPoints, imagePoints, cameraMatrix, distCoeffs  四个参数作为输入参数

rvec, tvec 作为输出参数

objectPoints是世界坐标系的三维坐标

imagePoints是图像上的二维点坐标

例如 使用标定好的单目相机拍摄一个矩形物体(已知相机内参&畸变系数),

objectPoints:使用量尺测量物体的左上角、右上角、左下角、右下角之间的距离,以任意一个点作为0点,建立世界坐标系,z值设为0,得到所有点的坐标则为objectPoints,保存在vector中。

imagePoints:在图像中找到物体的左上角、右上角、左下角、右下角四个点,其所有点的像素坐标为imagePoints,保存在vector中。

使用示例:

#include <iostream>
#include <vector>
#include <opencv2/opencv.hpp>int main() {std::vector<cv::Point3f> objectPoints;  // 世界坐标系中的三维点std::vector<cv::Point2f> imagePoints;   // 图像上的二维点// 添加 objectPoints 和 imagePoints 的数据// 创建相机内参数矩阵cv::Mat cameraMatrix = (cv::Mat_<double>(3,3) << fx, 0, cx, 0, fy, cy, 0, 0, 1);  // 创建相机畸变系数矩阵cv::Mat distCoeffs = (cv::Mat_<double>(1,5) << k1, k2, p1, p2, k3;//完善内参参数&畸变系数参数  cv::Mat rvec;  // 输出的旋转向量cv::Mat tvec;  // 输出的平移向量bool success = cv::solvePnP(objectPoints, imagePoints, cameraMatrix, distCoeffs, rvec, tvec);if (success) {// 获取旋转向量和平移向量的结果cv::Mat rotationMatrix;cv::Rodrigues(rvec, rotationMatrix);std::cout << "Rotation Vector:" << std::endl << rvec << std::endl;std::cout << "Translation Vector:" << std::endl << tvec << std::endl;std::cout << "Rotation Matrix:" << std::endl << rotationMatrix << std::endl;}return 0;
}

3、注意事项:

在使用solvePnP时,需注意objectPoints和imagePoints容器中的点坐标必须一一对应,例如只有四个点时,全部按左上角、右上角、左下角、右下角的顺序存放在容器中;如果顺序不相同,则最终输出值有误。

在笔者使用solvePnP时,拍摄物是四个定位圆,圆的像素坐标是通过opencv的SimpleBlobDetector识别的,识别以后的圆像素坐标是无序的,无法和objectPoints对应上,因此有了下述算法,

用于为四个二维坐标做冒泡排序得到左上角、右上角、左下角、右下角分别对应的点

(如果没有该需求,可以忽略此段)

int main() {std::vector<cv::Point2f> imagePoints; // 存放四个点的 vector// 假设已经将四个点的坐标存入 imagePoints 中// 寻找左上角、右上角、右下角和左下角对应的点cv::Point2f topLeft, topRight, bottomRight, bottomLeft;float minX = FLT_MAX, minY = FLT_MAX;float maxX = FLT_MIN, maxY = FLT_MIN;for (const auto& point : imagePoints) {if (point.x <= minX && point.y <= minY) {topLeft = point;minX = point.x;minY = point.y;}if (point.x >= maxX && point.y <= minY) {topRight = point;maxX = point.x;minY = point.y;}if (point.x >= maxX && point.y >= maxY) {bottomRight = point;maxX = point.x;maxY = point.y;}if (point.x <= minX && point.y >= maxY) {bottomLeft = point;minX = point.x;maxY = point.y;}}// 输出左上角、右上角、右下角和左下角对应的点的坐标std::cout << "左上角坐标: (" << topLeft.x << ", " << topLeft.y << ")" << std::endl;std::cout << "右上角坐标: (" << topRight.x << ", " << topRight.y << ")" << std::endl;std::cout << "右下角坐标: (" << bottomRight.x << ", " << bottomRight.y << ")" << std::endl;std::cout << "左下角坐标: (" << bottomLeft.x << ", " << bottomLeft.y << ")" << std::endl;// 新建一个vector存放四个点坐标,按照objectPoints的存放顺序进行存放std::vector<cv::Point2f> imagePoints2; imagePoints2.push_back(topLeft);imagePoints2.push_back(topRight);imagePoints2.push_back(bottomRight);imagePoints2.push_back(bottomLeft);return 0;
}

4、补充

通过solvePnP得到旋转向量rvec和平移向量tvec后,可以计算相机到被测物中心的实际距离

#include <cmath>
#include <iostream>
#include <vector>
#include <opencv2/opencv.hpp>int main() {std::vector<cv::Point3f> objectPoints;  // 世界坐标系中的三维点std::vector<cv::Point2f> imagePoints;   // 图像上的二维点// 添加 objectPoints 和 imagePoints 的数据// 创建相机内参数矩阵cv::Mat cameraMatrix = (cv::Mat_<double>(3,3) << fx, 0, cx, 0, fy, cy, 0, 0, 1);  // 创建相机畸变系数矩阵cv::Mat distCoeffs = (cv::Mat_<double>(1,5) << k1, k2, p1, p2, k3;//完善内参参数&畸变系数参数  cv::Mat rvec;  // 输出的旋转向量cv::Mat tvec;  // 输出的平移向量bool success = cv::solvePnP(objectPoints, imagePoints, cameraMatrix, distCoeffs, rvec, tvec);if (success) {//计算相机距离被测物的实际距离float distance = sqrt(tvec.at<double>(0,0) * tvec.at<double>(0,0) + tvec.at<double>(1,0) * tvec.at<double>(1,0) + tvec.at<double>(2,0) * tvec.at<double>(2,0)) / 10; std::cout << "distance = "<< distance << std::endl;}return 0;
}

http://www.lryc.cn/news/205046.html

相关文章:

  • DevOps持续集成-Jenkins(4)
  • 【数据仓库-零】数据仓库知识体系 ing
  • css3 3D 转换 技巧详细解析与代码实例
  • [Unity]给场景中的3D字体TextMesh增加描边方案一
  • TDengine(taos)数据库导出历史数据
  • 算法进修Day-37
  • 服务器之日常整活
  • 交互式 Web 应用 0 基础入门
  • JSONP的安全性较差,那么在跨域情况下,有没有其他更安全的替代方案呢?
  • Slax Linux 获得增强的会话管理和启动参数选项
  • C/C++新冠疫情死亡率 2020年9月电子学会青少年软件编程(C/C++)等级考试一级真题答案解析
  • Adobe Photoshop 基本操作
  • SpringMVC原理及核心组件
  • 【rk3568-linux】 rk3568x_linux-- 编译说明
  • 模拟计算器编程教程,中文编程开发语言工具编程实例
  • Spring Security漏洞防护—HTTP 安全响应头
  • Plooks大型视频在线一起看网站源码
  • 图像处理中底层、高层特征、上下文信息理解
  • 负载均衡的算法(静态算法与动态算法)
  • mac安装jdk
  • WIN11+OPENCV4.8 编译及下载失败处理方法
  • 万宾科技智能井盖传感器怎么使用?
  • Server Name Indication(SNI),HTTP/TLS握手过程解析
  • react项目实现文件预览,比如PDF、txt、word、Excel、ppt等常见文件(腾讯云cos)
  • ES SearchAPI----Query DSL语言
  • 【STM32】HAL库——串口中断只接收到两个字符
  • 页面html结构导出为word或pdf
  • Object.prototype.toString.call() 和 instanceOf 和 Array.isArray() 详解
  • 自学(黑客技术)方法——网络安全
  • CVE-2023-46227 Apache inlong JDBC URL反序列化漏洞