当前位置: 首页 > news >正文

贪心算法(1)--经典贪心算法

目录

一、活动安排问题

二、最优装载问题

三、分数背包问题

四、多机调度问题


一、活动安排问题

1、策略

        活动安排问题:设有n个活动的集合E={1,2,...,n},每个活动i都有一个使用该资源的起始时间s_i和一个结束时间f_i,且s_i<f_i。如果选择了活动i则它在时间区间[s_i,f_i)内占用资源,如何在有限的时间内选择最多的活动方案安排。

        解法按结束时间优先的贪心算法。

(1) 如果活动i和活动j能够相容,假设活动i在活动j之前,那么一定有f_i\leqslant s_j

(2)按照f_i序列对f_is_i同时进行排序,保证两者对应。排序可以使用快速排序、归并排序和堆排复杂度为O(nlogn)。

(3)第1个活动f_i最小,所以进入活动安排,其他如果存在s_j\geqslant f_i,则i=j,移动活动安排。

       给定一个活动序列 i,s_i,f_i的关系:

2、代码 

//活动安排
import java.util.Scanner;
public class activityarrangement {public static void main(String[] args){int n=new Scanner(System.in).nextInt();int s[]=new int[n];int f[]=new int[n];for(int i=0;i<n;i++)s[i]=new Scanner(System.in).nextInt();for(int i=0;i<n;i++)f[i]=new Scanner(System.in).nextInt();quickSort(f,s, 0, n-1);GreedySelector(s,f);}public static void GreedySelector(int s[],int f[]) {System.out.println(s[0]+" "+f[0]);int j=0;for(int i=1;i<s.length;i++){if(s[i]>=f[j]){System.out.println(s[i]+" "+f[i]);j=i;}}}

二、最优装载问题

1、策略

        有一批集装箱要装上一艘载重为c的轮船,集装箱i的重量为w_i,要求装载体积不受限制情况下,将尽可能多的集装箱装上轮船。

        利用贪心算法重量最轻的集装箱优先装载,直到轮船载重无法继续装入集装箱。

        排序方法可以使用快排、归排和堆排来降低时间复杂度。

        约束条件和目标函数如下:

        例题如下: 

2、代码 

//最优装载问题
public static void main(String []args) {int c=400;int weights[]={100,200,50,90,150,50,20,80};quickSort(weights,0,weights.length-1);System.out.println(load(weights,c));}
public static int load(int weights[],int c){int tmp=c;for(int i=0;i<weights.length;i++){if(c>weights[i]){c-=weights[i];}}return tmp-c;} 

三、分数背包问题

1、策略

        分数背包问题:在0-1背包的问题基础上,可以每个物品装一部分,即0~1背包问题,要求在有限的容量基础上,求解装有物品的最高总价值。

        策略:以单位重量价值最高的优先的贪心算法。

        建立a数组(单位重量下价值),以a数组为排序依据,同时排序a,w,v数组,计算a数组较大值优先的情况下能产生的最大总价值。

        例题如下:

2、代码

(省略排序过程)

//分数背包问题
public class dividebackage {
public static void main(String[] args){int n=3;int c=20;double w[]={18,15,10};double v[]={25,24,15};double a[]=new double[n];for(int i=0;i<n;i++)a[i]=v[i]/w[i];quickSort(a,w,v,0,w.length-1);System.out.println(maximum(a,w,v,c));} 
public static double maximum(double a[],double w[],double v[],int c){double value=0;int weight=0;for(int i=a.length-1;i>=0;i--){if((c-weight)>=w[i]){value+=v[i];weight+=w[i];}else{value+=v[i]*(c-weight)/w[i];break;}}return value;}
}

四、多机调度问题

1、概述

        多机调度问题:设有n个独立作业,由m台相同机器进行加工处理,作业i所需的处理时间为t_i,每个作业均可以在任何一台机器上加工处理,但不可间断、拆分。设计一种算法,使得n个作业在尽可能短的时间内由m台机器加工处理完成。

        策略:按任务时间较长的进行贪心算法,设定time,p,d,m,s五个数组(定义看下面代码注释),首先对time数组和p数组按任务时间降序排序(快排),调度问题为添加任务和时间推移两个阶段循环进行,直到任务不再添加,所有机器还需占用时间数为0,则退出调度问题。

        添加任务:遍历每一个机器,若当前机器m还需占用时间为0,且仍有任务i需要添加,则将任务i添加到机器m,机器m的所做任务数加一,机器m执行任务添加任务i编号。

        时间推移:时间后移一,每个任务的还需所占用时间减一,若每个机器的所占用时间都为0且没有新任务添加,则退出调度问题,返回当前时间。若存在机器i所占用时间为0,但仍有其他机器任务未结束,则机器i占用时间不再减少,避免出现负数。

        下面例题解决效果:

2、代码 

//多机调度问题
public class multimachine {public static void main(String[] args){int time[]={2,14,4,16,6,5,3};               //每个任务所占时间int p[]={1,2,3,4,5,6,7};                    //任务编号int d[]={0,0,0};                            //当前机器还需占用时间数int m[]={0,0,0};                            //每个机器执行了几个任务int s[][]=new int[d.length][time.length];   //每个机器执行了哪些任务//对时间列和任务编号进行重新排序quickSort(time,p,0,time.length-1);//输出多机调度总时间deploy(time,p,d,s,m);//输出每个机器执行了哪些任务for(int i=0;i<d.length;i++){for(int j=0;j<time.length;j++){if(s[i][j]==0)break;System.out.print(s[i][j]+" ");}System.out.println("");}} public static void deploy(int time[],int p[],int d[],int s[][],int m[]){int tot=0;int c=0;    //总作业序列顺序执行到几个while(true){//进入任务,增加每个机器的所占用时间for(int i=0;i<d.length;i++){if(d[i]==0&&c<time.length){d[i]+=time[c];s[i][m[i]++]=p[c++];}}tot+=1;int zero=0;//时间推移加一,减少每个机器的所占用时间for(int i=0;i<d.length;i++){if(d[i]==0)break;d[i]--;zero+=d[i];}//若每个机器都为0,且没有任务继续添加,则终止调度if(zero==0)break;}System.out.println(tot);}
http://www.lryc.cn/news/204622.html

相关文章:

  • Nginx负载均衡和备份和故障转移
  • Android-Framework 三方应用默认权限都不弹窗
  • TX Text Control.NET For WPF 32.0 Crack
  • 使用Go语言测试Redis性能
  • 【Javascript】运算符(赋值,算术,自增,自减)
  • Redis数据类型——list类型数据的扩展操作
  • [论文笔记]NEZHA
  • 【Linux】认识协议
  • Hadoop3教程(三十四):(生产调优篇)MapReduce生产经验汇总
  • Unity⭐️Win和Mac安卓打包环境配置
  • STM32F4XX之串口
  • 【J-Long Group Limited】申请1500万美元纳斯达克IPO上市
  • 上传文件到google drive
  • 用VLOOKUP快速合并两个表格
  • Vue ref属性
  • 【python入门】函数,类和对象
  • alibaba.fastjson的使用(二)-- jar包导入
  • A_搜索(A Star)算法
  • Tinywebserve学习之linux 用户态内核态
  • AI之浅谈
  • 20231024后端研发面经整理
  • 【前段基础入门之】=>CSS3新增渐变颜色属性
  • 深入浅出排序算法之归并排序
  • opencv dnn模块 示例(19) 目标检测 object_detection 之 yolox
  • 微信小程序阻止返回事件
  • YOLOv7改进:新颖的上下文解耦头TSCODE,即插即用,各个数据集下实现暴力涨点
  • Unity中Shader阴影的接收
  • ✔ ★【备战实习(面经+项目+算法)】 10.22学习时间表(总计学习时间:4.5h)(算法刷题:7道)
  • Amazonlinux2023(AL2023)获取metadata
  • C++(Chapter 3)