当前位置: 首页 > news >正文

langchain入门指南和实战

简单介绍

LangChain 是一个开源的语言模型集成框架,旨在简化使用大型语言模型(LLM)创建应用程序的过程。
利用它可以让开发者使用语言模型来实现各种复杂的任务,例如文本到图像的生成、文档问答、聊天机器人、
调用特定的SaaS服务等等。

OpenAi接口

1,/v1/models 用来返回可用的模型列表
2,/v1/completions 给定提示,模型将返回一个或多个预测完成,还可以返回每个位置的替代令牌的概率。
3,/v1/chat/completions 给定聊天对话,模型将返回聊天完成响应。角色有system assistant user

LangChain 中主要支持的组件如下所述:

Models:各种类型的模型和模型集成,比如OpenAI 的 ChatGPT。

import os
os.environ.setdefault("OPENAI_API_BASE", "http://llm.demo.haizhi.com/v1")
os.environ.setdefault("OPENAI_API_KEY", "EMPTY")from langchain.llms import OpenAI#llm = OpenAI(temperature=0, model_name="Baichuan2-13B-Chat")  # model_name="text-davinci-003" 这里使用OpenAI接口调用LLM模型
llm = OpenAI(temperature=0, model_name="ChatGLM2-6B")  # model_name="text-davinci-003" 这里使用OpenAI接口调用LLM模型
text = "你是个诗人,我写个劝学的打油诗吧"
print(llm(text))

Prompts:提示管理、提示优化和提示序列化,通过提示微调模型的语义理解。

import os
os.environ.setdefault("OPENAI_API_BASE", "http://llm.demo.haizhi.com/v1")
os.environ.setdefault("OPENAI_API_KEY", "EMPTY")from langchain.llms import OpenAIfrom langchain import PromptTemplatetemplate = """Question: {question}Let's think step by step.Answer: """#llm = OpenAI(temperature=0, model_name="Baichuan2-13B-Chat")
llm = OpenAI(temperature=0, model_name="ChatGLM2-6B")prompt = PromptTemplate(template=template, input_variables=["question"])final_promot = prompt.format(question="请告诉我该怎么学习大模型?")print(llm(final_promot))

Memory:用来保存和模型交互时的上下文状态。
Indexes:用来结构化文档,以便和模型交互。
Chains:一系列对各种组件的调用。

import os
os.environ.setdefault("OPENAI_API_BASE", "http://llm.demo.haizhi.com/v1")
os.environ.setdefault("OPENAI_API_KEY", "EMPTY")from langchain.llms import OpenAI
from langchain import PromptTemplate
from langchain import LLMChaintemplate = """Question: {question}Let's think step by step.Answer: """#llm = OpenAI(temperature=0, model_name="Baichuan2-13B-Chat")
llm = OpenAI(temperature=0, model_name="ChatGLM2-6B")prompt = PromptTemplate(template=template, input_variables=["question"])# final_promot = prompt.format(question="请告诉我该怎么学习大模型?")# print(llm(final_promot))llm_chain = LLMChain(prompt=prompt, llm=llm)question = "请告诉我该怎么学习向量库?"print(llm_chain.run(question))

Agents:决定模型采取哪些行动,执行并且观察流程,直到完成为止。

import os
os.environ.setdefault("OPENAI_API_BASE", "http://192.168.1.171:23620/v1")
os.environ.setdefault("OPENAI_API_KEY", "EMPTY")
from langchain.llms import OpenAI
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
from langchain.chains import SimpleSequentialChain#llm = OpenAI(temperature=0, model_name="Chinese-Alpaca-2-7B-ywj1016")
llm = OpenAI(temperature=0, model_name="ChatGLM2-6B")# 第一个链模版内容
template1 = "根据用户的输入的描述推荐一个适合的地区,用户输入: {value}"
prompt_template1 = PromptTemplate(input_variables=["value"], template=template1)
# 构建第一个链
chain1 = LLMChain(llm=llm, prompt=prompt_template1)# 第二个链模版内容
template2 = "根据用户的输入的地区推荐该地区的美食,用户输入: {value}"
prompt_template2 = PromptTemplate(input_variables=["value"], template=template2)
# 构建第二个链
chain2 = LLMChain(llm=llm, prompt=prompt_template2)# 将链组装起来
overall_chain = SimpleSequentialChain(chains=[chain1, chain2], verbose=True)# 运行链
review = overall_chain.run("北京")
print('结果:', review)

参考 https://github.com/langchain-ai/langchain
参考 https://github.com/chatchat-space/Langchain-Chatchat

http://www.lryc.cn/news/199621.html

相关文章:

  • 群晖synology DSM 7.2设置钉钉Webhooks通知
  • STP生成树协议详解
  • CentOS 6/7/8 操作系统镜像下载
  • 中国社科院与美国杜兰大学金融管理硕士---不将就的人生
  • 教程更新 | 持续开源 RK3568驱动指南-驱动基础进阶篇
  • Jmeter测试关联接口
  • C++之基于Winsock2封装UDPServer与UDPClient
  • 为什么说指针是c语言的灵魂?
  • 性能测试jmeter命令行运行+html测试报告解读
  • Service Mesh和Kubernetes:加强微服务的通信与安全性
  • 『吴秋霖赠书活动 | 第三期』《Python asyncio并发编程》
  • 数字孪生在工厂领域的应用和优势
  • 如何写代码实现VRP问题中车辆容量限制及时间窗要求(python)
  • C语言求解汉诺塔问题
  • 安装LSF
  • 百度的新想象力在哪?
  • Linux使用rpm包安装mysql5.7
  • LLDB 三种输出方式 对比及原理探索
  • 基于架构软件设计-架构真题(五十八)
  • jvm实现的锁优化
  • JMeter做http接口功能测试
  • 【安全体系架构】——SIEM架构
  • nginx acess日志找不到访问记录问题
  • canvas使用
  • PMP认证考试证书领取的通知
  • 华为云HECS云服务器docker环境下安装nacos
  • Oracle数据库修改序列,Oracle中的主键值和序列中的值对应不上时的处理方式
  • Verilog基础:避免混合使用阻塞和非阻塞赋值
  • 04、MySQL-------MyCat实现分库分表
  • 开源软件-禅道Zentao