当前位置: 首页 > news >正文

pytorch分布式数据训练结合学习率周期及混合精度

文章目录

  • 1、SPAWN方式
  • 2、torchrun 方式

正如标题所写,我们正常的普通训练都是单机单卡或单机多卡。而往往一个高精度的模型需要训练时间很长,所以DDP分布式数据并行和混合精度可以加速模型训练。混精可以增大batch size.

如下提供示例代码,经过官网查阅验证的。原始代码由百度文心一言提供。
问题:pytorch 分布式数据并行与学习率周期和混合精度训练的示例代码
该问题分别问了(当前2023年10月16日)百度文心一言,google bard,科大讯飞星火,chatgpt4,bing。目前看来只有文心给出最接近正确答案。当前版本 pythorch 2.0.1。关于混精 torch.cuda.amp.autocast(args...)`` is equivalent to ``torch.autocast("cuda", args...),混精可以参考:

  • https://pytorch.org/tutorials/recipes/recipes/amp_recipe.html?highlight=torch%20cuda%20amp%20autocast
  • https://pytorch.org/docs/stable/amp.html#gradient-scaling

1、SPAWN方式

在使用这些助手(都是免费的)时,发现对于不同问题,各自的优劣不同,所以可以都试一下。
在PyTorch中,分布式数据并行(Distributed Data Parallel,DDP)可以在多个GPU上并行训练模型,提高训练速度。学习率周期(Learning Rate Schedules)用于调整训练过程中学习率的变化,而混合精度训练则可以提高训练速度并减少内存使用。
以下是一个使用PyTorch的分布式数据并行、学习率周期和混合精度训练的示例代码:

import os
import torch
import torch.nn as nn
import torch.optim as optim
import torch.distributed as dist
import torch.multiprocessing as mp
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.optim.lr_scheduler import ExponentialLR, CosineAnnealingLR
from torch.cuda.amp import GradScaler, autocastdef setup(rank, world_size):"""Args:rank: Unique identifier of each processworld_size: Total number of processes"""os.environ['MASTER_ADDR'] = 'localhost'os.environ['MASTER_PORT'] = '12355'# initialize the process groupdist.init_process_group(backend="nccl", rank=rank, world_size=world_size)torch.cuda.set_device(rank)def cleanup():dist.destroy_process_group()
# 定义模型
class SimpleModel(nn.Module):def __init__(self):super(SimpleModel, self).__init__()self.fc = nn.Linear(10, 10)def forward(self, x):return self.fc(x)# 训练函数
def train(rank, world_size):print(f"Running basic DDP example on rank {rank}.")gpu=ranksetup(rank=rank,world_size=world_size,)torch.manual_seed(0)model = SimpleModel().cuda(gpu)ddp_model = DDP(model, device_ids=[gpu])# 使用混合精度训练scaler = GradScaler()optimizer = optim.SGD(ddp_model.parameters(), lr=0.01)# 使用学习率周期scheduler1 = ExponentialLR(optimizer, gamma=0.9)scheduler2 = CosineAnnealingLR(optimizer, T_max=50, eta_min=0)# 模拟数据data = torch.randn(32, 10).to(gpu)target = torch.randn(32, 10).to(gpu)for epoch in range(100):optimizer.zero_grad()with autocast():  # 启用混合精度训练output = ddp_model(data)loss = nn.MSELoss()(output, target)scaler.scale(loss).backward()  # 使用scaler进行梯度缩放scaler.step(optimizer)  # 更新参数scaler.update()  # 更新GradScaler状态scheduler1.step()  # 使用ExponentialLR调整学习率scheduler2.step()  # 使用CosineAnnealingLR调整学习率print(f"Rank {rank}, Epoch {epoch}, Loss {loss.item()}")cleanup()
if __name__ == "__main__":world_size = torch.cuda.device_count()  # 获取可用GPU的数量mp.spawn(train, args=(world_size,), nprocs=world_size, join=True)  # 在每个GPU上运行train函数

这个示例代码在每个GPU上并行训练一个简单的线性模型。每个进程(即每个GPU)都有自己的模型副本,并且每个进程都独立计算梯度。然后,所有进程都会聚集他们的梯度并平均,然后用于一次总体参数更新。这个过程会根据学习率周期来调整每个epoch后的学习率

本部分参考官方的:https://pytorch.org/tutorials/beginner/ddp_series_multigpu.html?highlight=torch%20multiprocessing 是写单GPU和多GPU的区别。

2、torchrun 方式

首先是写一个ddp.py,内容如下:

import os
import torch
import torch.nn as nn
import torch.optim as optim
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.optim.lr_scheduler import ExponentialLR, CosineAnnealingLR
from torch.cuda.amp import GradScaler, autocast# 定义模型
class SimpleModel(nn.Module):def __init__(self):super(SimpleModel, self).__init__()self.fc = nn.Linear(10, 10)def forward(self, x):return self.fc(x)# 训练函数
def train():dist.init_process_group("nccl")rank = dist.get_rank()print(f"Start running basic DDP example on rank {rank}.")gpu = rank %  torch.cuda.device_count()torch.manual_seed(0)model = SimpleModel().to(gpu)ddp_model = DDP(model, device_ids=[gpu])# 使用混合精度训练scaler = GradScaler()optimizer = optim.SGD(ddp_model.parameters(), lr=0.01)# 使用学习率周期scheduler1 = ExponentialLR(optimizer, gamma=0.9)scheduler2 = CosineAnnealingLR(optimizer, T_max=50, eta_min=0)# 模拟数据data = torch.randn(32, 10).to(gpu)target = torch.randn(32, 10).to(gpu)for epoch in range(100):optimizer.zero_grad()with autocast():  # 启用混合精度训练output = ddp_model(data)loss = nn.MSELoss()(output, target)scaler.scale(loss).backward()  # 使用scaler进行梯度缩放scaler.step(optimizer)  # 更新参数scaler.update()  # 更新GradScaler状态scheduler1.step()  # 使用ExponentialLR调整学习率scheduler2.step()  # 使用CosineAnnealingLR调整学习率print(f"Rank {rank}, Epoch {epoch}, Loss {loss.item()}")dist.destroy_process_group()
if __name__ == "__main__":train()

单机多卡,执行:

torchrun --nproc_per_node=4 --standalone ddp.py

如果是多机多卡:

torchrun --nnodes=2 --nproc_per_node=8 --rdzv_id=100 --rdzv_backend=c10d --rdzv_endpoint=$MASTER_ADDR:29400 elastic_ddp.py

本部分参考:
https://pytorch.org/tutorials/intermediate/ddp_tutorial.html#save-and-load-checkpoints

http://www.lryc.cn/news/198505.html

相关文章:

  • Looper分析
  • LoongArch单机Ceph Bcache加速4K随机写性能测试
  • 景联文科技语音数据标注:AUTO-AVSR模型和数据助力视听语音识别
  • 【R】数据相关性的可视化
  • Spring Security 6.x 系列【68】 授权篇之基于注解 缓存的访问控制方案
  • QML(11)——qml界面之间通信方式详解
  • 图像检索算法 计算机竞赛
  • 科学清理Windows系统垃圾,让你的电脑性能快如火箭
  • docker图形胡界面管理工具--Portainer可视化面板安装
  • 环形链表的约瑟夫问题
  • python requests.get发送Http请求响应结果乱码、Postman请求结果正常
  • Dialog动画相关
  • 【java学习—八】==操作符与equals方法(2)
  • Linux系统编程_进程间通信第1天:IPC、无名管道pipe和命名管道mkfifo(半双工)、消息队列msgget(全双工)
  • figma+windows系统
  • typescript实现一个简单的区块链
  • 服务器被暴力破解怎么解决
  • 用来生成二维矩阵的dcgan
  • 免费的国产数据集成平台推荐
  • 【yolov8系列】yolov8的目标检测、实例分割、关节点估计的原理解析
  • 5256C 5G终端综合测试仪
  • Springboot Actuator 环境搭建踩坑
  • Vue-3.3ESLint
  • STROBE-MR
  • Hive安装配置 - 内嵌模式
  • html中登录按钮添加回车键登录
  • PCL 空间两平面交线计算
  • 交替合并字符串
  • Linux考试复习整理
  • 基于geojson-vt和canvas的高性能出图