当前位置: 首页 > news >正文

数据分析:密度图

在这里插入图片描述
目前拥有的数据如图,三列分别对应瑕疵种类,对应的置信
度,x方向坐标。
现在想要做的事是观看瑕疵种类和置信度之间的关系。
要显示数据分布的集中程度,可以使用以下几种常见的图形来观察:

1、箱线图(Box Plot):箱线图展示了数据的中位数、上下四分位数、最小值和最大值等统计指标,并通过箱体的长度和须的长度来表示数据的分布情况。箱线图能够展示数据的异常值和偏态程度,从而提供数据集中程度的信息。
2、直方图(Histogram):直方图用柱状图的形式表示数据在不同区间内的频数或频率。直方图能够给出数据的分布情况,高度表示数据出现的频次,整个图形可以展示数据的集中和离散程度。
3、密度图(Density Plot):密度图是通过平滑直方图来估计数据的概率密度函数,并以连续曲线的形式展示数据分布的集中程度。密度图可以更直观地看出数据的峰值和分布的波动情况。
4、散点图(Scatter Plot):散点图用点的位置来表示两个变量之间的关系。通过观察散点图中点的分布情况,可以大致判断数据的集中程度和相关性。

下面我使用的是密度图,因为密度的连续曲线更加容易看出数据分布的集中程度。

import pandas as pd
import matplotlib.pyplot as plt# 读取没有列标签的CSV文件
df = pd.read_csv('camera0.csv', header=None)
# 使用整数索引访问列数据
confidence_by_type = df.groupby(0)[1]
# 绘制置信度密度分布图
plt.figure(figsize=(10, 6))
confidence_by_type.plot(kind='density', linewidth=2, alpha=0.5)
plt.xlabel('Confidence')
plt.ylabel('Density')
plt.title('Confidence Density Distribution by Type')
plt.legend(confidence_by_type.groups.keys())# 显示图形
plt.show()

请添加图片描述
如上图所示,我的横坐标是第二列置信度,纵坐标是密度,四条线分别对应第一列的四种类型。
这样就可以看懂我的数据的分布集中情况。

http://www.lryc.cn/news/198160.html

相关文章:

  • docker load and build过程的一些步骤理解
  • 批量处理图像模板
  • 2023_Spark_实验十四:SparkSQL入门操作
  • 如何将几个模型合并成一个
  • 异常气体识别与飘移
  • 分类预测 | Matlab实现WOA-BiLSTM鲸鱼算法优化双向长短期记忆神经网络的数据多输入分类预测
  • 35 机器学习(三):混淆矩阵|朴素贝叶斯|决策树|随机森林
  • ImportError: urllib3 v2.0 only supports OpenSSL 1.1.1+
  • webrtc gcc算法(1)
  • 2022年亚太杯APMCM数学建模大赛C题全球变暖与否全过程文档及程序
  • 苹果开发者 Xcode发布TestFlight全流程
  • Spring Security—Servlet 应用架构
  • 排序优化:如何实现一个通用的、高性能的排序函数?
  • 车载开发学习——CAN总线
  • 2023年知名国产数据库厂家汇总
  • 【ARM Coresight SoC-400/SoC-600 专栏导读】
  • 在Go中创建自定义错误
  • Vue.js2+Cesium1.103.0 十三、通过经纬度查询 GeoServer 发布的 wms 服务下的 feature 对象的相关信息
  • 使用STM32怎么喂狗 (IWDG)
  • GEE:计算和打印GEE程序的执行时间
  • GDPU 数据结构 天码行空5
  • SQLAlchemy学习-12.查询之 order_by 按desc 降序排序
  • 如何轻松打造数字人克隆系统+直播系统?OEM教你快速部署数字人SaaS系统源码
  • 药物滥用第四篇介绍
  • Apache Doris (四十三): Doris数据更新与删除 - Update数据更新
  • 面试算法29:排序的循环链表
  • python中不可变类型和可变类型
  • vue3封装Axios库的 API 请求并使用拦截器来处理请求和响应
  • RK3588开发笔记(二):基于方案商提供sdk搭建引入mpp和sdk的宿主机交叉编译Qt5.12.10环境
  • rust学习——函数返回值