当前位置: 首页 > news >正文

暴力递归转动态规划(十)

题目
给定一个二维数组matrix[][],一个人必须从左上角出发,最终到达右下角,沿途只可以向下或者向右走,沿途的数字都累加就是距离累加和。返回最小距离累加和。
这道题中会采用压缩数组的算法来进行优化

暴力递归
暴力递归方法的整体思路是根据小人所在的位置(当前值),通过向下传递(向左走向右走)来获取最终选择路径的最小值。
所以base case可以确定:

  1. 如果小人走到了最后一行,那么接下来就只能向下走。
  2. 如果小人走到了最后一列,那么接下来就只能向左走。
  3. 如果小人走到了matrix[][]的最后一个格子,返回当前值给上层做处理,取最小值。
  4. 否则,既可以向左也走可以向右走,并获取最小值。

所以暴力递归的方法就出来了。

public static int minPathSum1(int[][] matrix) {if (null == matrix || matrix.length == 0 || matrix[0] == null || matrix[0].length == 0) {return -1;}int row = matrix.length;int col = matrix[0].length;return process(row - 1, col - 1, 0, 0, matrix);}//返回 matrix[i...][j....] 位置的最小值。public static int process(int row, int col, int curRow, int curCol, int[][] matrix) {//当走到最后一个位置,返回matrix中最后一个位置的值if (curRow == row && curCol == col) {return matrix[row][col];}//走到最后一行,只能往右走,只能向右累加if (curRow == row) {return matrix[curRow][curCol] + process(row, col, curRow, curCol + 1, matrix);}//走到最后一列,只能向下走if (curCol == col) {return matrix[curRow][curCol] + process(row, col, curRow + 1, curCol, matrix);}//否则,可以向右走,可以向下走,进行累加。int curValue = matrix[curRow][curCol];int p1 = curValue + process(row, col, curRow + 1, curCol, matrix);int p2 = curValue + process(row, col, curRow, curCol + 1, matrix);return Math.min(p1, p2);}

动态规划
这道题的动态规划也不难,给定的是一个二维数组matrix[][],每次行和列会进行变化(可变参数),所以可以创建一个和matrix大小相等的dp[][]来存放每一步计算的值。
因为只可以向下走或向右走,所以dp中任选一个格子的依赖是依赖自己的左侧的值和上面的值。其中dp中第一行的值只会依赖同行左侧的值,dp中第一列的值只会依赖同一列上面的值
所以先将dp中第一行和第一列的值填充好后,其余的按照依赖关系填充,即可完善dp表。

代码

 public static int dp(int[][] matrix) {if (null == matrix || matrix.length == 0 || matrix[0] == null || matrix[0].length == 0) {return -1;}int row = matrix.length;int col = matrix[0].length;int[][] dp = new int[row][col];dp[0][0] = matrix[0][0];for (int i = 1; i < col; i++) {dp[0][i] = dp[0][i - 1] + matrix[0][i];}for (int j = 1; j < row; j++) {dp[j][0] = dp[j - 1][0] + matrix[j][0];}for (int i = 1; i < row; i++) {for (int j = 1; j < col; j++) {dp[i][j] = Math.min(dp[i - 1][j], dp[i][j - 1]) + matrix[i][j];}}return dp[row - 1][col - 1];}

优化
动态规划方法中是创建了一个和matrix[][]大小相等的dp表,通过填充dp表来完善的代码。

如果给定的matrix[][]太大了,是不是我的dp表也要跟着很大,并且,在填充dp表时,第三行依赖第二行的值,第四行依赖第三行的值,此时。第二行的值就已经没有用了,不再需要它了,所以是不是只需要一个跟matrix[][]中列的长度相等的一维数组arr[]就够了。

先根据matrix[][]中第0行的值填充arr[],下面的两层循环中,最外层循环会让arr[0]每次加matrix中当行行的第一个值(因为只依赖上面)。内层循环,会找需要依赖的上面值(arr[j])和左边值(arr[j - 1])来取最小值,后加上matrix中当前位置上的值。

代码

 public static int minPathSum2(int[][] matrix) {if (matrix == null || matrix.length == 0 || matrix[0] == null || matrix[0].length == 0) {return 0;}int row = matrix.length;int col = matrix[0].length;int[] arr = new int[col];arr[0] = matrix[0][0];//根据matrix第一行的值填充arrfor (int i = 1; i < col; i++) {arr[i] = arr[i - 1] + matrix[0][i];}for (int i = 1; i < row; i++) {arr[0] += matrix[i][0];for (int j = 1; j < col; j++) {//arr[j - 1] : 相当于我依赖的左边//arr[j]  : 因为此时arr[j]的值还没修改,还是上一行的值,相当于自己的上面。 arr[j] = Math.min(arr[j - 1], arr[j]) + matrix[i][j];}}return arr[col - 1];}
http://www.lryc.cn/news/193814.html

相关文章:

  • 深度学习-房价预测案例
  • 【26】c++设计模式——>命令模式
  • ElasticSearch容器化从0到1实践(一)
  • 【Vue面试题二十四】、Vue项目中有封装过axios吗?主要是封装哪方面的?
  • 旅游票务商城小程序的作用是什么
  • LabVIEW在安装了其它的NI软件之后崩溃了
  • 基于Java的个人健康管理系统设计与实现(源码+lw+部署文档+讲解等)
  • nginx https的配置方法
  • 使用WebDriver采样器将JMeter与Selenium集成
  • flink教程
  • 视频监控系统/安防视频平台EasyCVR广场视频细节优化
  • 电脑上播放4K视频需要具备哪些条件?
  • 测试除了点点点,还有哪些内容呢?
  • HTTP的本质理解
  • 微信小程序获取公众号的文章
  • 【算法|动态规划No.20】leetcode416. 分割等和子集
  • 深入解析C语言中的strstr函数
  • HDLbits: Fsm serial
  • LuaJit交叉编译移植到ARM Linux
  • 【RocketMQ系列一】初识RocketMQ
  • 【06】基础知识:React组件实例三大核心属性 - ref
  • Bootstrap-媒体类型
  • spring Cloud笔记--服务治理Eureka
  • pdf压缩文件怎么压缩最小?pdf压缩方法汇总
  • Golang学习记录:基础篇练习(一)
  • sql注入(7), python 实现盲注爆破数据库名, 表名, 列名
  • 2021年12月 Python(二级)真题解析#中国电子学会#全国青少年软件编程等级考试
  • 卡尔曼家族从零解剖-(01)预备知识点
  • 技术分享| 二进制部署MySQL
  • 3.1 模板测试与深度测试(Stencil Test Z Test)