当前位置: 首页 > news >正文

yolov5+车辆重识别【附代码】

本篇文章主要是实现的yolov5和reid结合的车辆重识别项目。是在我之前实现的yolov5_reid行人重识别的代码上修改实现的baseline模型。

目录

相关参考资料

数据集说明

环境说明

项目使用说明

vehicle reid训练

yolov5车辆重识别

从视频中获取想要检测的车(待检测车辆)

车辆查找

项目完整代码


相关参考资料

涉及到的相关资料如下:

参考的reid论文:Bag of Tricks and A Strong Baseline for Deep Person Re-identification(这应该是一篇19年的论文,可能稍微比较早了,但很有参考价值)

Reid代码详解:Reid strong baseline 代码详解

Reid之网络的定义:Reid之网络的定义代码详解

Reid训练代码之数据集处理:Reid训练代码之数据集处理

Reid损失函数理论学习:Reid损失函数理论学习

Reid度量学习Triplet loss:Reid度量学习之Triplet loss 

yolov5_行人重识别:yolov5_行人重识别 


数据集说明

数据集采用的是veri数据集,该数据集的格式与markt1501类似。

%******************************************************************************************************************%
VeRi-776Reference:Liu, Xinchen, et al. "Large-scale vehicle re-identification in urban surveillance videos." ICME 2016.URL:https://vehiclereid.github.io/VeRi/Dataset statistics:# identities: 776# images: 37778 (train) + 1678 (query) + 11579 (gallery)# cameras: 20
%******************************************************************************************************************%%%%%%% Content in the Zip file%%%%%%%%%%
1. "image_test" file. This file contains 11579 images for testing.
2. "image_train" file. This file contains 37778 images for training.
3. "image_query" file. It contains 1678 query images. Search is performed in the "image_test" file.

环境说明

torch >= 1.7.0

torchvision >=0.8.0

opencv-python   4.7.0.72
opencv-python-headless    4.7.0.72
numpy  1.21.6
matplotlib   3.4.3

loguru   0.5.3

项目使用说明

该训练reid项目中vehicle_search与_search项目是独立的!!训练完reid后,把训练好的权重放到 vehicle_search/weights下,切换到vehicle_search_search项目中在去进行reid识别【不然有时候会报can't import xxx】。

项目仅包含reid的训练,不包含yolov5的训练,可以直接把yolov5的权重拿来用即可。

vehicle reid训练

将预权重下载后放置下项目weights中。

数据集放置在data/下,目录如下:

data/veri
        |-- image_query
        |-- image_test
        |-- image_train

训练预权重下载链接:

r50_ibn_2.pth,resnet50-19c8e357.pth放在yolov5_vehicle_reid/weights下

链接:百度网盘 请输入提取码 提取码:yypn

train.py中的训练参数:

参数说明:

--config_file: 配置文件路径,默认configs/softmax_triplet.yml

--weights: Reid pretrained weight path

--neck: If train with BNNeck, options: bnneck or no

--test_neck: BNNeck to be used for test, before or after BNNneck options: before or after

--model_name: Name of backbone.

--pretrain_choice: Imagenet

--IF_WITH_CENTER: us center loss, True or False.

配置文件的修改 

配置包含在两个目录文件中:

1.config/defaults.py为项目默认的配置文件

2.configs/下各yml文件为训练期间的配置文件

主要以yml配置文件为主,当两个配置文件参数名相同的时候以yml文件为主,这个需要注意一下。

configs文件:

softmax_triplet.yml为例:

SOLVER:OPTIMIZER_NAME: 'Adam' # 优化器MAX_EPOCHS: 120  # 总epochsBASE_LR: 0.00035IMS_PER_BATCH: 8  # batch
TEST:IMS_PER_BATCH: 4 # test batchRE_RANKING: 'no'WEIGHT: "path"  # test weight pathFEAT_NORM: 'yes'
OUTPUT_DIR: "/logs" # model save path

 训练命令:

python tools/train.py --weights 【预权重路径】--config_file configs/softmax_triplet.yml MODEL.DEVICE_ID "('0')" DATASETS.NAMES "('veri')" DATASETS.ROOT_DIR "(r'./data')

训练的权重会保存在logs/文件夹下。


yolov5车辆重识别

该项目可用于做reid识别,可用于做跨视频车辆识别

reid网络采用resnet50_ibn_a(权重需要和defaults.py中的MODEL.NAME对应),支持se_resnext50网络。权重见文末百度盘链接。

🔌注意:

该项目没有将yolov5训练加入,只是将检测功能和reid进行了整理。

vehicle_search下只进行检测,不进行reid的训练,reid的训练在yolov5_vehicle_reid中。

从视频中获取想要检测的车(待检测车辆)

python get_query.py

可从弹出的视频中利用鼠标框选待检测的车辆。

操作方法:

运行程序后用鼠标左键从目标左上角进行框选,按“空格”键继续播放视频(会自动把框选的图像进行保存)

该车辆图像会保存在query文件夹中,默认命名格式为veri

ps:也可以直接将图像放在query文件中,但名字也需要按veri命名。

车辆查找

权重下载:

检测:将 训练好的reid权重放在👂vehicle/weights文件下,yolov5s.pt放vehicle_search

链接:百度网盘 请输入提取码 提取码:yypn

修改reid/config/defaults.py中的_C.TEST.WEIGHT为reid权重路径

参数说明:

--weights: yolov5权重路径

--source: video/file/ path

--data: data/coco128.yaml

--imgsz: 输入图像大小,默认(640,640)

--conf_thres:置信度阈值

--iou_thres:iou阈值

--classes:过滤的类

--half:半精度推理

--dist_thres:reid对比的距离阈值(小于该阈值判断为同一个车)

--save_res:保存视频图像

python search.py --weights yolov5s.pt --source car.mp4 --dist_thres 1

如果需要检测视频或者多视频(跨视频检测),需要指定source路径。

目标车辆的检索

 


项目完整代码

GitHub - YINYIPENG-EN/yolov5_vehicle_reid: yolov5+reid实现的车辆重识别

 

http://www.lryc.cn/news/193433.html

相关文章:

  • C语言练习百题之#ifdef和#ifndef的应用
  • 与C语言不同的基础语法
  • Python文件读写实战:处理日常任务的终极工具!
  • 思维模型 秩序
  • pyqt5移动鼠标时显示鼠标坐标
  • 分享一下开发回收废品小程序的步骤
  • 568A和568B两种线序
  • kafka广播消费组停机后未删除优化
  • 深度学习自学笔记十三:unet网络详解和环境配置
  • 如何给苹果ipa和安卓apk应用APP包体修改手机屏幕上logo图标iocn?
  • 复旦MBA魏文童:构建完备管理知识体系,助力企业数字化发展
  • 【算能】在Docker中调用PCIe卡
  • 【MySQL】表的查询与连接
  • AtCoder Beginner Contest 324(F)
  • LuatOS-SOC接口文档(air780E)-- i2s - 数字音频
  • 瑞芯微RK3568核心板在边缘服务器产品中的应用-迅为电子
  • pg ash自制版 pg_active_session_history
  • Elasticsearch系列组件:Kibana无缝集成的数据可视化和探索平台
  • phpcms_v9模板制作及二次开发常用代码
  • 自然语言处理(NLP)-概述
  • Python开发者的宝典:CSV和JSON数据处理技巧大公开!
  • Unity中Commpont类获取子物体的示例
  • 【Vue面试题二十一】、Vue中的过滤器了解吗?过滤器的应用场景有哪些?
  • Unity 3D基础——缓动效果
  • 高校教务系统登录页面JS分析——南京邮电大学
  • css实现排行榜样式(vue组件)
  • I2VGen-XL高清图像生成视频大模型
  • Angular知识点系列(1)-每天10个小知识
  • 【从0开发】百度BML全功能AI开发平台【实操:以部署情感分析模型为例】
  • 源码解析FlinkKafkaConsumer支持punctuated水位线发送