当前位置: 首页 > news >正文

三数之和[中等]

优质博文:IT-BLOG-CN

一、题目

给你一个整数数组nums,判断是否存在三元组[nums[i], nums[j], nums[k]]满足i != ji != kj != k,同时还满足nums[i] + nums[j] + nums[k] == 0。请你返回所有和为0且不重复的三元组。

注意:答案中不可以包含重复的三元组。

示例 1:
输入:nums = [-1,0,1,2,-1,-4]
输出:[[-1,-1,2],[-1,0,1]]
解释:
nums[0] + nums[1] + nums[2] = (-1) + 0 + 1 = 0
nums[1] + nums[2] + nums[4] = 0 + 1 + (-1) = 0
nums[0] + nums[3] + nums[4] = (-1) + 2 + (-1) = 0
不同的三元组是[-1,0,1][-1,-1,2]
注意,输出的顺序和三元组的顺序并不重要。

示例 2:
输入:nums = [0,1,1]
输出:[]
解释:唯一可能的三元组和不为0

示例 3:
输入:nums = [0,0,0]
输出:[[0,0,0]]
解释:唯一可能的三元组和为0

3 <= nums.length <= 3000
-105 <= nums[i] <= 105

二、代码

排序 + 双指针: 题目中要求找到所有「不重复」且和为0的三元组,这个「不重复」的要求使得我们无法简单地使用三重循环枚举所有的三元组。这是因为在最坏的情况下,数组中的元素全部为0,即[0,0,0,0,0]任意一个三元组的和都为0。如果我们直接使用三重循环枚举三元组,会得到O(N3)个满足题目要求的三元组(其中N是数组的长度)时间复杂度至少为O(N3)。在这之后,我们还需要使用哈希表进行去重操作,得到不包含重复三元组的最终答案,又消耗了大量的空间。这个做法的时间复杂度和空间复杂度都很高,因此我们要换一种思路来考虑这个问题。

「不重复」的本质是什么?我们保持三重循环的大框架不变,只需要保证:第二重循环枚举到的元素不小于当前第一重循环枚举到的元素;第三重循环枚举到的元素不小于当前第二重循环枚举到的元素。

也就是说,我们枚举的三元组(a,b,c)满足a≤b≤ca,保证了只有(a,b,c)这个顺序会被枚举到,而(b,a,c)(c,b,a)等等这些不会,这样就减少了重复。要实现这一点,我们可以将数组中的元素从小到大进行排序,随后使用普通的三重循环就可以满足上面的要求。同时,对于每一重循环而言,相邻两次枚举的元素不能相同,否则也会造成重复。举个例子,如果排完序的数组为[]1,2,2,2,4]

nums.sort()
for first = 0 .. n-1// 只有和上一次枚举的元素不相同,我们才会进行枚举if first == 0 or nums[first] != nums[first-1] thenfor second = first+1 .. n-1if second == first+1 or nums[second] != nums[second-1] thenfor third = second+1 .. n-1if third == second+1 or nums[third] != nums[third-1] then// 判断是否有 a+b+c==0check(first, second, third)

这种方法的时间复杂度仍然为O(N3),毕竟我们还是没有跳出三重循环的大框架。然而它是很容易继续优化的,可以发现,如果我们固定了前两重循环枚举到的元素ab,那么只有唯一的c满足a+b+c=0。当第二重循环往后枚举一个元素b时,由于b′>b,那么满足a+b′+c′=0c′一定有c′<c,即c′在数组中一定出现在c的左侧。也就是说,我们可以从小到大枚举b,同时从大到小枚举c,即第二重循环和第三重循环实际上是并列的关系。

有了这样的发现,我们就可以保持第二重循环不变,而将第三重循环变成一个从数组最右端开始向左移动的指针,从而得到下面的伪代码:

nums.sort()
for first = 0 .. n-1if first == 0 or nums[first] != nums[first-1] then// 第三重循环对应的指针third = n-1for second = first+1 .. n-1if second == first+1 or nums[second] != nums[second-1] then// 向左移动指针,直到 a+b+c 不大于 0while nums[first]+nums[second]+nums[third] > 0third = third-1// 判断是否有 a+b+c==0check(first, second, third)

这个方法就是我们常说的「双指针」,当我们需要枚举数组中的两个元素时,如果我们发现随着第一个元素的递增,第二个元素是递减的,那么就可以使用双指针的方法,将枚举的时间复杂度从O(N2)减少至O(N)。为什么是O(N)呢?这是因为在枚举的过程每一步中,「左指针」会向右移动一个位置(也就是题目中的b),而「右指针」会向左移动若干个位置,这个与数组的元素有关,但我们知道它一共会移动的位置数为O(N),均摊下来,每次也向左移动一个位置,因此时间复杂度为O(N)

注意到我们的伪代码中还有第一重循环,时间复杂度为O(N),因此枚举的总时间复杂度为O(N2)。由于排序的时间复杂度为O(Nlog⁡N),在渐进意义下小于前者,因此算法的总时间复杂度为O(N2)

上述的伪代码中还有一些细节需要补充,例如我们需要保持左指针一直在右指针的左侧(即满足b≤c),具体可以参考下面的代码,均给出了详细的注释。

class Solution {public List<List<Integer>> threeSum(int[] nums) {//思想:1、先对 nums 进行排序// 2、先确定第一层循环,通过 0 - nums[x] 得到第二层和第三层的和// 3、将第二层和第三层汇总为一层,left = i + 1; right = nums.length - 1; 进行双指针移动,计算和,如果相等,加入队列,并继续移动指针,直到不满足 left < rightint left = 0, right = 0, size = 0;List<List<Integer>> res = new ArrayList();Arrays.sort(nums);for(int i = 0; i < nums.length; i++) {if (i > 0 && i < nums.length && nums[i] == nums[i-1]) {continue;}// i 发生变化之后,left 和 right 指针都需要发生变化。 第一次将right定义再外部,导致bugleft = i + 1;right = nums.length - 1;int tar = -nums[i];while(left < right) {if (nums[left] + nums[right] == tar) {List<Integer> temp = Arrays.asList(nums[i], nums[left], nums[right]);res.add(temp);// 数据去重while(left < right && nums[left] == nums[left + 1]) {++left;}while(right > left && nums[right] == nums[right - 1]) {--right;}++left;--right;} else if(nums[left] + nums[right] < tar){++left;} else {--right;}}}return res;}
}

时间复杂度: O(N2)其中N是数组nums的长度。
时间复杂度: O(N2),其中N是数组nums的长度。

http://www.lryc.cn/news/192263.html

相关文章:

  • 基于天牛须优化的BP神经网络(分类应用) - 附代码
  • 渗透波菜网站
  • Spring Boot:Dao层-实例介绍
  • 接口测试入门:深入理解接口测试!
  • Redis微服务架构
  • 【C++】 局部对象,引用返回
  • 线性代数中涉及到的matlab命令-第二章:矩阵及其运算
  • 计算机毕业设计选什么题目好?springboot 美食推荐系统
  • 爆肝整理,Jmeter接口性能测试-跨线程调用变量实操(超详细)
  • Maven导入程序包jakarta.servlet,但显示不存在
  • es6(二)——常用es6说明
  • 经典垃圾回收器
  • 台达DOP-B07S410触摸屏出现HMI no response无法上传的解决办法
  • [资源推荐] 复旦大学张奇老师科研分享
  • C++数位动态规划算法:统计整数数目
  • ip 网段设置 --chatGPT
  • 使用JMeter进行接口测试教程
  • 文本生成解码策略
  • 华为数通方向HCIP-DataCom H12-831题库(单选题:221-240)
  • AttributeError: module ‘hanlp.utils.rules‘ has no attribute ‘tokenize_english‘
  • 苍穹外卖(四) AOP切面公共字段自动填充及文件上传
  • vue-cli + vue3 项目 ios 苹果手机白屏问题
  • Spring Boot中的JdbcTemplate是什么,如何使用
  • Python测网络连通性、能否访问某个网络或者端口号<网络检测、ping主机、测试端口>
  • 【沧元图】玉阳宫主是正是邪,和面具人有勾结吗?现在已有答案了
  • C++笔记之popen()和std_system()和std_async()执行系统命令比较
  • pycharm2020无法打开,点击无反应
  • 深度学习之微调
  • 【# 完美解决 node.js 模块化后报错 ReferenceError: require is not defined】
  • Jackson忽略json数组中null元素