当前位置: 首页 > news >正文

494.目标和

在这里插入图片描述

1. 回溯算法

这题和之前做的那些排列、组合的回溯稍微有些不同,你不需要每次选数据时都是for遍历去选择,很明显这是顺序选择的
比如 数组[0,1],target=1;
在这里插入图片描述
递归数组,每个元素都 + 或者 - ,然后取最后结果为0的即可

class Solution {public int findTargetSumWays(int[] nums, int target) {find(0,nums,target);return count;}private void find(int begin,int[] nums,int target){// 如果减完了,结束if(begin == nums.length){if(target == 0){count++;}return;}target-=nums[begin];find(begin+1,nums,target);target+=nums[begin];target+=nums[begin];find(begin+1,nums,target);target-=nums[begin];   }private int count=0;
}

2. 动态规划

这其实可以抽象为0/1背包问题。
数组中的元素,要么是前面+,要么是前面-,问计算结果为target的方案有多少种。
计算结果为0,即我们把前面为+的元素放在一个集合A中,前面为-的元素放在一个集合B中,二者之差为target即可。
我们如果知道了集合A,那么集合B自然就是数组中剩余元素组成。

可以列个简单的数学公式,假设A集合元素的和为left,B元素和为right,数组总和为sum

left + right = sum;
left - right = target;

二者一相加可以得到 left=(sum+target)/2;
由于都是正整数,left如果不是正整数,说明无解,即没有这种方案。

思路成功转换为,背包容量为left,在数组中找出和刚好为left的方案,并记录方案的最大数。

  1. 确定dp[i][j]

即dp[i][j] :在数组中下标为0~i的元素中任选,和刚好为j的方案数量

  1. 确定递推公式
    如果第i个元素不选,那方案数量和dp[i-1][j]的一样
    dp[i][j] = dp[i-1][j]
    如果选了第i个元素,那方案就不仅仅从i-1个元素选出和为j的,从i-1个元素选出和为j-nums[i]的也可以,两种方案数相加。
    dp[i][j] = dp[i-1][j] + dp[i-1][j-nums[i]]

  2. 如何初始化
    dp[0][0]=1 我可以都不选,那方案数就是1
    初始化第一行 dp[0][nums[0]]+=1;
    题目中提示给出nums[i]范围是可能为0,所以如果nums[0]=0,那就是dp[0][0]中都不选的方案中,再添加一种,选择元素0,那就是两个方案了!!!
    重点细节,卡了我一个上午!!!

  3. 确定遍历顺序
    先数组元素,再背包容量

  4. 模拟推导

class Solution {public int findTargetSumWays(int[] nums, int target) {if(nums.length == 1){return target == nums[0]?1:target == 0-nums[0]?1:0;}// 把集合分成前面放+的正集合和前面放-的负集合.正集合的和为left,负集合的和为right// left+right=sum left-right=target => left = (target+sum)/2// 即转换为问题---把背包容量为left的背包装满有多少种方案// 同时,如果left不为整数,说明不行,返回0// dp[i][j] 在下标0为~i的元素中,填满背包容量为j,有多少种方案// dp[i][j] = dp[i-1][j] 如果不装i// dp[i][j] = Math.max(dp[i-1][j-nums[i]],dp[i-1][j]) 如果装iint sum=0;for(int i:nums){sum += i;}if((target+sum)%2 != 0 ){return 0;}if(target > sum || target < -sum){return 0;}int num = (target+sum)/2;num = num < 0?-num:num;int[][] dp = new int[nums.length][num+1];// 当容量为0的时候,都不选就是一种方案for(int i=0;i<nums.length;i++){dp[i][0]=1;}// 遍历第一行,dp[0][nums[0]]+=1 因为可能第一行中nums[0]=0,此时dp[0][0]其实已经初始化为1了,但是dp[0][0]其实有两个方案的,一个是都不选,一个是选了0,这个细节决定了我们后续的遍历从第二行开始是否成功!!!if(nums[0]<num+1){dp[0][nums[0]]+=1;}for(int i=1;i<nums.length;i++){for(int j=0;j<num+1;j++){dp[i][j] = dp[i-1][j];if(j>=nums[i]){dp[i][j] = dp[i-1][j-nums[i]] + dp[i-1][j];   } }}return dp[nums.length-1][num];}
}

优化成一维的

class Solution {public int findTargetSumWays(int[] nums, int target) {if(nums.length == 1){return target == nums[0]?1:target == 0-nums[0]?1:0;}// 把集合分成前面放+的正集合和前面放-的负集合.正集合的和为left,负集合的和为right// left+right=sum left-right=target => left = (target+sum)/2// 即转换为问题---把背包容量为left的背包装满有多少种方案// 同时,如果left不为整数,说明不行,返回0// dp[i][j] 在下标0为~i的元素中,填满背包容量为j,有多少种方案// dp[i][j] = dp[i-1][j] 如果不装i// dp[i][j] = Math.max(dp[i-1][j-nums[i]],dp[i-1][j]) 如果装iint sum=0;for(int i:nums){sum += i;}if((target+sum)%2 != 0 ){return 0;}if(target > sum || target < -sum){return 0;}int num = (target+sum)/2;num = num < 0?-num:num;int[]dp = new int[num+1];// 当容量为0的时候,都不选就是一种方案dp[0]=1;// 遍历第一行if(nums[0]<num+1){dp[nums[0]]+=1;}for(int i=1;i<nums.length;i++){for(int j=num;j>=nums[i];j--){dp[j] += dp[j-nums[i]]; }}return dp[num];}
}

这道题很经典,建议过段时间重复刷

http://www.lryc.cn/news/19205.html

相关文章:

  • 滑台模组的应用有哪些?
  • CS224W课程学习笔记(四):node2vec算法原理与说明
  • 扩展lucas定理
  • 医疗影像工具LEADTOOLS 入门教程: 从 PDF 中提取附件 - 控制台 C#
  • 【LVGL】学习笔记--(1)Keil中嵌入式系统移植LVGL
  • Transformer学习笔记
  • vue-cli引入wangEditor、Element,封装可上传附件的富文本编辑器组件(附源代码直接应用,菜单可调整)
  • 移动办公时代,数智化平台如何赋能企业管理升级?
  • 2023“拼夕夕”为什么可以凭借简单的拼团做这么大?
  • sqlmap工具
  • 高/低压供配电系统设计——安科瑞变电站电力监控系统的应用
  • Tapdata 和 Databend 数仓数据同步实战
  • 单核CPU, 1G内存,也能做JVM调优吗?
  • 《计算机应用研究》投稿经历和时间节点
  • mars3d获取视窗的范围
  • 《高性能MySQL》读书笔记(上)
  • 05-代理模式
  • RocketMQ源码分析之消费队列、Index索引文件存储结构与存储机制-上篇
  • 基于Java的浏览器的设计与实现毕业设计
  • 手把手教你使用vite打包自己的js代码包并推送到npm
  • Tomcat源码分析-关于tomcat热加载的一些思考
  • DataWhale 大数据处理技术组队学习task4
  • Oracle 12C以上统计信息收集CDB、PDB执行时间不一致问题
  • 用Python获取弹幕的两种方式(一种简单但量少,另一量大管饱)
  • 算法训练营 day55 动态规划 买卖股票问题系列3
  • 电商共享购模式,消费增值返利,app开发
  • 机房信息牌系统
  • 金测评 手感更细腻的游戏手柄,双模加持兼容更出色,雷柏V600S上手
  • Windows10 下测试 Intel SGX 功能
  • Tina_Linux_功耗管理_开发指南