当前位置: 首页 > news >正文

python实现图像的直方图均衡化

直方图均衡化是一种用于增强图像对比度的图像处理技术。它通过重新分配图像中的像素值,使得图像的像素值分布更加均匀,增强图像的对比度,从而改善图像的视觉效果。

直方图均衡化的过程如下:

  • 灰度转换:如果图像是彩色图像,则首先需要将其转换为灰度图像。这可以通过将彩色图像的RGB通道值平均或权重化来实现,得到一个表示亮度的灰度图像。
  • 统计直方图:对于灰度图像,统计每个像素值的频数,生成原始图像的直方图。直方图表示了不同像素值的数量分布。
  • 计算累积分布函数:通过计算原始图像的累积分布函数,可以得到每个像素值的累积概率分布,即小于等于该像素值的概率。可以通过对直方图进行归一化和累加操作得到。
  • 映射像素值:根据每个像素值的累积概率分布映射出新的像素值,即将概率乘以255得到均衡化后的像素值。
  • 像素重新映射:对于原始图像中的每个像素,根据映射将其像素值替换为均衡化后的像素值。
  • 生成均衡化后的图像:根据重新映射的像素值,生成均衡化后的图像。均衡化后的图像在直方图上将有更平坦的分布,从而提高了图像的对比度。

可以直接调用openCV的库函数实现图像的直方图均衡化

cv2.equalizeHist(img)

可以写一个完整的测试代码如下

import matplotlib.pyplot as plt
import cv2img = cv2.imread("OIP.jpg")
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
plt.hist(img.ravel(), bins=256)
plt.title('origin')
plt.show()  # 原始直方图
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
plt.title('origin')
plt.imshow(img)
plt.show()  # 原始灰度图img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
img = cv2.equalizeHist(img)
plt.hist(img.ravel(), bins=256)
plt.title('systemEqualize')
plt.show()  # 均衡化直方图
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
plt.imshow(img)
plt.title('systemEqualize')
plt.show()  # 均衡化灰度图

 

在这里我们手动实现一个图像的直方图均衡化,不调用库函数

首先读取一张照片并将其转化为灰度图

img = cv2.imread("OIP.jpg")
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

然后计算图像的直方图,并计算直方图的累积分布

hist = cv2.calcHist([img], [0], None, [256], [0, 256])
cdf = hist.cumsum()

再计算像素值的累积分布概率,并根据累积分布概率映射出新的像素值,根据该映射重新分配原图像的像素值,根据插值操作可以很方便的进行一一映射,这个interp函数非常的讲究,我研究了半天还是没有看懂它的作用,直到后来看到某位大佬的解说才醍醐灌顶恍然大悟——interpret(x,xp,yp)以xp和yp构造映射函数f,返回f(x),这就让我们的像素值映射变得简单

mapPixel = 255 * cdf / cdf[-1]
img = numpy.interp(img.ravel(), range(256), mapPixel).reshape(img.shape)

最后输出均衡化的图像以及均衡化的直方图,由于像素值是8位表示的,在刚才的计算过程中会使用64位进行存储,因此还需要对图像的像素值进行一下转换一下

img = cv2.convertScaleAbs(img)
plt.hist(img.ravel(), bins=256)
plt.title('myEqualize')
plt.show()  # 均衡化直方图
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
plt.imshow(img)
plt.title('myEqualize')
plt.show()  # 均衡化灰度图

衡化后的图像的直方图如图所示,其中左图为OpenCV库函数均衡化的效果,右图是我们手动实现均衡化的效果,可见都达到了将原图的像素值均匀分开的效果

均衡化后的图像如图所示,其中左图为OpenCV库函数均衡化的效果,右图是我们手动实现均衡化的效果,可知二者效果基本相同,与原图相比,均衡化后的图像对比度提高了,其中云层增加了更多的细节,看起来更清晰了一些

 

完整代码如下 

import matplotlib.pyplot as plt
import cv2
import numpyimg = cv2.imread("OIP.jpg")
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
hist = cv2.calcHist([img], [0], None, [256], [0, 256])
cdf = hist.cumsum()
mapPixel = 255 * cdf / cdf[-1]
img = numpy.interp(img.ravel(), range(256), mapPixel).reshape(img.shape)
img = cv2.convertScaleAbs(img)
plt.hist(img.ravel(), bins=256)
plt.title('myEqualize')
plt.show()  # 均衡化直方图
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
plt.imshow(img)
plt.title('myEqualize')
plt.show()  # 均衡化灰度图
http://www.lryc.cn/news/190928.html

相关文章:

  • 哪种烧录单片机的方法合适?
  • 安规电容总结
  • MyCat分片垂直拆分
  • MongoDB bin目录没有mongo.exe命令
  • Zookeeper分布式一致性协议ZAB源码剖析
  • 微软 AR 眼镜新专利:包含热拔插电池
  • 软件TFN 2K的分布式拒绝攻击(DDos)实战详解
  • 计算机网络第四章——网络层(末)
  • Newman基本使用
  • 左值引用右值引用
  • 学习开发一个RISC-V上的操作系统(汪辰老师) — 一次RV32I加法指令的反汇编
  • IDEA中点击New没有Java Class
  • 打造炫酷效果:用Java优雅地制作Excel迷你图
  • pycharm设置pyuic和pyrcc
  • OpenCV6-图形绘制
  • kafka消费者程序日志报错Offset commit failed问题研究
  • SpringBoot+原生HTML+MySQL开发的电子病历系统源码
  • 软件测试/测试开发/人工智能丨聊聊AutoGPT那些事儿
  • KdMapper扩展实现之SOKNO S.R.L(speedfan.sys)
  • MATLAB算法实战应用案例精讲-【图像处理】计算机视觉
  • docker应用的缓存 docker缓存机制
  • 借助 ZooKeeper 生成唯一 UUID
  • Redis哨兵机制原理
  • Maven Web应用
  • 考古:MFC界面的自适应缩放(代码示例)
  • 计算机网络 | 物理层
  • Centos下编译ffmpeg动态库
  • 深度学习:UserWarning: The parameter ‘pretrained‘ is deprecated since 0.13..解决办法
  • leetcode-279. 完全平方数
  • MySQL常用指令