当前位置: 首页 > news >正文

分类预测 | MATLAB实现KOA-CNN-BiLSTM开普勒算法优化卷积双向长短期记忆神经网络数据分类预测

分类预测 | MATLAB实现KOA-CNN-BiLSTM开普勒算法优化卷积双向长短期记忆神经网络数据分类预测

目录

    • 分类预测 | MATLAB实现KOA-CNN-BiLSTM开普勒算法优化卷积双向长短期记忆神经网络数据分类预测
      • 分类效果
      • 基本描述
      • 程序设计
      • 参考资料

分类效果

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本描述

1.MATLAB实现KOA-CNN-BiLSTM开普勒算法优化卷积双向长短期记忆神经网络数据分类预测,多特征输入模型,运行环境Matlab2020b及以上;
2.基于开普勒算法(KOA)优化卷积双向长短期记忆神经网络(CNN-BiLSTM)分类预测。
2023年新算法,KOA-CNN-BiLSTM开普勒优化卷积双向长短期记忆神经网络的数据分类预测,MATLAB程序,多变量特征输入,优化了学习率、卷积核大小及隐藏层单元个数等,方便增加维度优化自它参数。
3.多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用。程序语言为matlab,程序可出分类效果图,迭代图,混淆矩阵图。
4.data为数据集,输入12个特征,分四类;main为主程序,其余为函数文件,无需运行。
5.输出指标包括优化参数、精确度、召回率、精确率、F1分数。

程序设计

  • 完整程序和数据获取方式,私信博主回复MATLAB实现KOA-CNN-BiLSTM开普勒算法优化卷积双向长短期记忆神经网络数据分类预测
[Order] = sort(PL_Fit);  %% 对当前种群中的解的适应度值进行排序%% 函数评估t时的最差适应度值worstFitness = Order(SearchAgents_no);                  %% Eq.(11)M = M0 * (exp(-lambda * (t / Tmax)));                   %% Eq.(12)%% 计算表示太阳与第i个解之间的欧几里得距离Rfor i = 1:SearchAgents_noR(i) = 0;for j = 1:dimR(i) = R(i) + (Sun_Pos(j) - Positions(i, j))^2;   %% Eq.(7)endR(i) = sqrt(R(i));end%% 太阳和对象i在时间t的质量计算如下:for i = 1:SearchAgents_nosum = 0;for k = 1:SearchAgents_nosum = sum + (PL_Fit(k) - worstFitness);endMS(i) = rand * (Sun_Score - worstFitness) / (sum);   %% Eq.(8)m(i) = (PL_Fit(i) - worstFitness) / (sum);           %% Eq.(9)end%%2步:定义引力(F)% 计算太阳和第i个行星的引力,根据普遍的引力定律:for i = 1:SearchAgents_noRnorm(i) = (R(i) - min(R)) / (max(R) - min(R));      %% 归一化的R(Eq.(24)MSnorm(i) = (MS(i) - min(MS)) / (max(MS) - min(MS)); %% 归一化的MSMnorm(i) = (m(i) - min(m)) / (max(m) - min(m));      %% 归一化的mFg(i) = orbital(i) * M * ((MSnorm(i) * Mnorm(i)) / (Rnorm(i) * Rnorm(i) + eps)) + (rand); %% Eq.(6)end
% a1表示第i个解在时间t的椭圆轨道的半长轴,
for i = 1:SearchAgents_noa1(i) = rand * (T(i)^2 * (M * (MS(i) + m(i)) / (4 * pi * pi)))^(1/3); %% Eq.(23)
endfor i = 1:SearchAgents_no
% a2是逐渐从-1-2的循环控制参数
a2 = -1 - 1 * (rem(t, Tmax / Tc) / (Tmax / Tc)); %% Eq.(29)% ξ是从1-2的线性减少因子
n = (a2 - 1) * rand + 1;    %% Eq.(28)
a = randi(SearchAgents_no); %% 随机选择的解的索引
b = randi(SearchAgents_no); %% 随机选择的解的索引
rd = rand(1, dim);          %% 按照正态分布生成的向量
r = rand;                   %% r1是[0,1]范围内的随机数%% 随机分配的二进制向量
U1 = rd < r;                %% Eq.(21)
O_P = Positions(i, :);      %% 存储第i个解的当前位置%%6步:更新与太阳的距离(第345在后面)
if rand < rand% h是一个自适应因子,用于控制时间t时太阳与当前行星之间的距离h = (1 / (exp(n * randn))); %% Eq.(27)% 基于三个解的平均向量:当前解、迄今为止的最优解和随机选择的解Xm = (Positions(b, :) + Sun_Pos + Positions(i, :)) / 3.0;Positions(i, :) = Positions(i, :) .* U1 + (Xm + h .* (Xm - Positions(a, :))) .* (1 - U1); %% Eq.(26)
else

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229

http://www.lryc.cn/news/188922.html

相关文章:

  • Java队列相关面试题
  • 水库大坝除险加固安全监测系统解决方案
  • android native C++编程实现数据库加密sqlcipher
  • 第五节 C++ 循环结构(算法)
  • 接口与抽象类的区别
  • 短视频账号矩阵系统源码saas===独立部署
  • 香港专用服务器拥有良好的国际网络连接
  • IP/SIP网络有源吸顶喇叭 20W扬声器 可供POE供电
  • 基于Keil a51汇编 —— 程序模板文件以及规则
  • 案例研究 | 玉湖冷链基于JumpServer实现管理安全一体化
  • JavaEE初阶学习:HTTP协议和Tomcat
  • ASEMI整流桥GBU810参数,GBU810封装
  • docker应用记录总结
  • Jenkins 添加节点Node报错JNI error has occurred UnsupportedClassVersionError
  • swift ui 布局 ——Stack(HStack、VStack、ZStack)
  • 淘宝天猫商品评论数据接口,淘宝天猫商品评论API接口,淘宝API
  • C# Onnx GFPGAN GPEN-BFR 人像修复
  • ubuntu安装依赖包时显示需要先安装其所需要的各种安装包)apt-get源有问题
  • C/C++之自定义类型(结构体,位段,联合体,枚举)详解
  • HBase 表如何按照某表字段排序后顺序存储的方法?
  • webrtc用clang编译支持h264,支持msvc调用库
  • 迁移学习是什么?
  • 哈希的应用--位图和布隆过滤器
  • mac M2芯片在使用Android studio 编译问题bad cpu type in executable android
  • M4Singer ubuntu 22.04 4060ti16g ModuleNotFoundError: No module named ‘gradio‘
  • postman 密码rsa加密登录-2加密密码
  • 如何去图片水印?这些方法解决你的问题
  • Qt通过正则表达式筛选出字符串中的手机号
  • 【Pytorch】深度学习之数据读取
  • Maven教程