当前位置: 首页 > news >正文

Fourier变换中的能量积分及其详细证明过程

Fourier变换中的能量积分及其详细证明过程

在使用Fourier变换分析信号时候,有时需要用到能量积分。本文对Fourier变换的能量积分进行分析。

一、Fourier变换中的能量积分

F ( ω ) = F [ f ( t ) ] F(\omega)=\mathscr F[f(t)] F(ω)=F[f(t)],则有

∫ − ∞ + ∞ [ f ( t ) ] 2 d t = 1 2 π ∫ − ∞ + ∞ ∣ F ( ω ) ∣ 2 d ω (1) \int_{ - \infty }^{ + \infty } [{f}(t)]^2 {\rm{d}}t = \frac{1}{{2\pi }}\int_{ - \infty }^{ + \infty }| {F}(\omega )|^2 {\rm{d}}\omega \tag1 +[f(t)]2dt=2π1+F(ω)2dω(1)
该等式又称为Parseval等式。

二、证明Fourier变换中的能量积分(Parseval 等式)

证明:
根据Fourier变换的乘积定理的推论,令 f 1 ( t ) = f 2 ( t ) = f ( t ) f_1(t)=f_2(t)=f(t) f1(t)=f2(t)=f(t),则
∫ − ∞ + ∞ [ f ( t ) ] 2 d t = ∫ − ∞ + ∞ f ( t ) f ( t ) d t = 1 2 π ∫ − ∞ + ∞ F ( ω ) ‾ F ( ω ) d ω = 1 2 π ∫ − ∞ + ∞ ∣ F ( ω ) ∣ 2 d ω = 1 2 π ∫ − ∞ + ∞ S ( ω ) d ω \int_{ - \infty }^{ + \infty } [{f}(t)]^2 {\rm{d}}t = \int_{ - \infty }^{ + \infty } {{{f}(t)} } {f}(t){\rm{d}}t \\\\= \frac{1}{{2\pi }}\int_{ - \infty }^{ + \infty } {\overline {{F}(\omega )} } {F}(\omega ){\rm{d}}\omega\\\\= \frac{1}{{2\pi }}\int_{ - \infty }^{ + \infty }| {F}(\omega )|^2 {\rm{d}}\omega\\\\= \frac{1}{{2\pi }}\int_{ - \infty }^{ + \infty } {S}(\omega ) {\rm{d}}\omega +[f(t)]2dt=+f(t)f(t)dt=2π1+F(ω)F(ω)dω=2π1+F(ω)2dω=2π1+S(ω)dω
其中, S ( ω ) = ∣ F ( ω ) ∣ 2 {S}(\omega )=|{F}(\omega )|^2 S(ω)=F(ω)2,并将 S ( ω ) {S}(\omega ) S(ω)称为能量密度函数(或称为能量谱密度)。
证毕.
注解:关于Fourier变换的乘积定理及其推论和证明过程(见本博主文章:链接: Fourier变换的乘积定理及其详细证明过程).

能量密度函数 S ( ω ) {S}(\omega ) S(ω)决定了函数 f ( t ) f(t) f(t)的能量在频域的分布规律,将 S ( ω ) {S}(\omega ) S(ω)对所有频率积分就得到 f ( t ) f(t) f(t)在时间域 ( − ∞ , + ∞ ) (-\infty,+\infty) (,+)范围的总能量 ∫ − ∞ + ∞ [ f ( t ) ] 2 d t \int_{ - \infty }^{ + \infty } [{f}(t)]^2 {\rm{d}}t +[f(t)]2dt。因此,Parseval等式又称为能量积分。
此外,还可知能量密度函数 S ( ω ) {S}(\omega ) S(ω)是一个偶函数,即
S ( ω ) = S ( − ω ) {S}(\omega )={S}(-\omega ) S(ω)=S(ω).

三、能量积分(Parseval等式)特别注意事项

  1. ∫ − ∞ + ∞ [ f ( t ) ] 2 d t = 1 2 π ∫ − ∞ + ∞ ∣ F ( ω ) ∣ 2 d ω \int_{ - \infty }^{ + \infty } [{f}(t)]^2 {\rm{d}}t = \frac{1}{{2\pi }}\int_{ - \infty }^{ + \infty }| {F}(\omega )|^2 {\rm{d}}\omega +[f(t)]2dt=2π1+F(ω)2dω等式中, ∣ F ( ω ) ∣ 2 |{F}(\omega )|^2 F(ω)2表示对 F ( ω ) F(\omega) F(ω)取模后再平方,而不能写成 [ F ( ω ) ] 2 [{F}(\omega )]^2 [F(ω)]2,此处要特别留意该差别。
  2. 能量密度函数 S ( ω ) {S}(\omega ) S(ω)是一个偶函数,即 S ( ω ) = S ( − ω ) {S}(\omega )={S}(-\omega ) S(ω)=S(ω),它不等于 f ( t ) f(t) f(t)的傅里叶变换(即能量谱密度和频谱是两种不同的计算过程);而是能量密度函数 S ( ω ) {S}(\omega ) S(ω)等于 f ( t ) f(t) f(t)的傅里叶变换后取模再平方而得到。
http://www.lryc.cn/news/187614.html

相关文章:

  • 保护 Web 服务器安全性
  • docker数据管理和网络通信
  • 代理IP与Socks5代理:网络工程师的神奇魔法棒
  • 【K8S系列】深入解析k8s 网络插件—kube-router
  • Flutter的Platform介绍-跨平台开发,如何根据不同平台创建不同UI和行为
  • gitlab docker部署,备份,恢复
  • 腾讯云/阿里云国际站代理:阿里云、华为云和腾讯云“大展拳脚”,与国际巨头未来竞争焦点是AI计算?
  • 基于Java+SpringBoot+Vue企业OA管理系统的设计与实现 前后端分离【Java毕业设计·文档报告·代码讲解·安装调试】
  • Java架构师系统架构设计性能评估
  • Android可滑动的分时图以及常用动画
  • 软考系统架构师常考知识点整理(含案例分析、论文历年题目总结)
  • Netty通信在中间件组件中的广泛使用-Dubbo3举例
  • 基于Java的在线拍卖系统设计与实现(源码+lw+部署文档+讲解等)
  • Maven Pom
  • 【运维日常】mongodb 集群生产实践
  • 【MATLAB源码-第45期】基于matlab的16APSK调制解调仿真,使用卷积编码软判决。
  • HarmonyOS学习路之方舟开发框架—学习ArkTS语言(状态管理 八)
  • SQL按照id集合顺序返回
  • 04训练——基于YOLO V8的自定义数据集训练——在windows环境下使用pycharm做训练-1总体步骤
  • iview表格 异步修改列数据卡顿 滚动条失效
  • 【Linux】常驻内核和虚拟内存的区别
  • Qt 串口接收包含汉字的数据,汉字乱码
  • 设计模式 - 结构型模式考点篇:适配器模式(类适配器、对象适配器、接口适配器)
  • android Google官网 :支持不同的语言和文化 rtl / ltr : 本地化适配:RTL(right-to-left) 适配
  • Visual Studio Code配置C/C++开发环境
  • 室内渲染的艺术:创造理想空间的视觉魔法!
  • php发送get、post请求的6种方法简明总结?
  • Go基础之变量和常量
  • 红队专题-Cobalt strike4.5二次开发
  • Java数据结构之Deque(双端队列)