当前位置: 首页 > news >正文

基础算法之——【动态规划之路径问题】1

今天更新动态规划路径问题1,后续会继续更新其他有关动态规划的问题!动态规划的路径问题,顾名思义,就是和路径相关的问题。当然,我们是从最简单的找路径开始!

  • 动态规划的使用方法:
    1.确定状态并定义状态数组:(i,j)代表什么意思?dp[i][j]又是什么意思?
    2.确定状态转移方程,即递推公式
    3.确定边界条件并初始化
    4.确定遍历顺序
    5.状态转移
    6.输出结果

在这里插入图片描述

文章目录

  • 一、LC 62 不同路径
      • 方法一:深度优先搜索
      • 方法二:动态规划(二维)
      • 方法三:动态规划(一维)
      • 方法四:排列组合
  • 二、LC 63 不同路径II
      • 方法一:动态规划(二维)
      • 方法二:动态规划(一维)
      • 方法三:记忆化搜索
  • 三、LC 64 最小路径和
      • 方法一:动态规划(二维)
      • 方法二:动态规划(一维)


一、LC 62 不同路径

LC 62 不同路径
一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。

问总共有多少条不同的路径?
在这里插入图片描述


方法一:深度优先搜索

代码如下:

class Solution {
private:int dfs(int m,int n,int i,int j){//行或列有至少一个越界if(i>m||j>n) return 0;//到达终点(在竖直方向达到m,水平方向达到n,也即坐标达到(m,n))if(i==m && j==n) return 1;//递归搜索(左子树和右子树)return dfs(m,n,i+1,j)+dfs(m,n,i,j+1);}
public:int uniquePaths(int m, int n) {//从根节点开始遍历int cnt=dfs(m,n,1,1);return cnt;}
};

方法二:动态规划(二维)

代码如下:

/*动态规划的使用方法:
1.确定状态并定义状态数组:(i,j)代表什么意思?dp[i][j]又是什么意思?
2.确定状态转移方程,即递推公式
3.确定边界条件并初始化
4.确定遍历顺序
5.状态转移
6.输出结果
*/
class Solution {public:int uniquePaths(int m, int n) {//定义一个状态数组,用来存方法数      int dp[101][101]={0};//初始化状态数组for(int i=0;i<m;i++){dp[i][0]=1;}for(int j=0;j<n;j++){dp[0][j]=1;}//遍历for(int i=1;i<m;i++){for(int j=1;j<n;j++){//状态转移dp[i][j]=dp[i][j-1]+dp[i-1][j];}}//返回结果return dp[m-1][n-1];}
};

方法三:动态规划(一维)

代码如下:

class Solution {
public:int uniquePaths(int m, int n) {//定义一维状态数组  int dp[101]={0};//初始化数组值为1,即相对于二维数组第一行全是1for(int i=0;i<n;i++){dp[i]=1;}//遍历for(int i=1;i<m;i++){for(int j=1;j<n;j++){//状态转移:dp[j]指的是上一行的j,dp[j-1]指的是当前行左边的j;//每次状态转移都相当于先将上一行的运算拷贝过来,再加上从左面来的方案数dp[j]=dp[j-1]+dp[j];}}return dp[n-1];}
};

方法四:排列组合

代码如下:

class Solution {
public:int uniquePaths(int m, int n) {long long numerator = 1; // 初始化分子int denominator = m - 1; // 初始化分母int count = m - 1;//定义分子的乘积项的个数int t = m + n - 2;//定义分子的最大乘积项while (count--) {//分子累乘count项numerator *= (t--);while (denominator != 0 && numerator % denominator == 0) {//约分(也即除以公因数)numerator /= denominator;//约去一个公因数denominator--;}}return numerator;}
};

二、LC 63 不同路径II

LC 63 不同路径II
一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish”)。

现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?

网格中的障碍物和空位置分别用 1 和 0 来表示。
在这里插入图片描述



方法一:动态规划(二维)

代码如下:

 class Solution {
public:int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {//求出二维动态数组的行数int m=obstacleGrid.size();//求出二维动态数组的列数int n=obstacleGrid[0].size();//定义状态数组int dp[101][101]={0};//边界判断if(obstacleGrid[0][0]==1 || obstacleGrid[m-1][n-1]==1) return 0;//初始化状态数组dp[0][0]=1;//遍历for(int i=0;i<m;i++){for(int j=0;j<n;j++){//如果是障碍物,则此路不通,路径数归零if(obstacleGrid[i][j]==1){dp[i][j]=0;continue;}//状态转移,此处和上面的一样if(i>0 && j>0) dp[i][j]=dp[i-1][j]+dp[i][j-1];else if(i>0) dp[i][j]=dp[i-1][j];else if(j>0) dp[i][j]=dp[i][j-1];//也可以这样写
/*if(obstacleGrid[i][j]==0){//状态转移,此处和上面的一样if(i>0 && j>0) dp[i][j]=dp[i-1][j]+dp[i][j-1];else if(i>0) dp[i][j]=dp[i-1][j];else if(j>0) dp[i][j]=dp[i][j-1];}}else continue;
*/}}return dp[m-1][n-1];}
};

方法二:动态规划(一维)

代码如下:

class Solution {
public:int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {if (obstacleGrid[0][0] == 1)return 0;vector<int> dp(obstacleGrid[0].size(),0);//初始化一维状态数组(第一行)for (int j = 0; j < dp.size() && obstacleGrid[0][j] == 0 ; ++j)if (j == 0)dp[j] = 1;elsedp[j] = dp[j-1];//for (int i = 1; i < obstacleGrid.size(); ++i)//行for (int j = 0; j < dp.size(); ++j){//列if (obstacleGrid[i][j] == 1)dp[j] = 0;else if (j != 0)dp[j] = dp[j] + dp[j-1];}return dp.back();//返回最后一个状态对应值}
};

方法三:记忆化搜索

代码如下:

class Solution {
public:int m,n;vector<vector<int>>memo;vector<pair<int,int>>dir{{0,1},{1,0}};int uniquePathsWithObstacles(vector<vector<int>>& ob) {n=ob.size();m=ob[0].size();if(ob[0][0]==1||ob[n-1][m-1]==1){return 0;}memo.resize(n,vector<int>(m,0));return dfs(ob,0,0);}int dfs(vector<vector<int>>&ob,int i,int j){if(memo[i][j]!=0){return memo[i][j];}if(i==n-1&&j==m-1){memo[i][j]=1;return 1;}int cur=0;for(auto &d:dir){int x=i+d.first;int y=j+d.second;if(x>=0&&x<n&&y>=0&&y<m&&ob[x][y]==0){cur+=dfs(ob,x,y);}}memo[i][j]=cur;return memo[i][j];}
};作者:Gallant MurdockrFZ
链接:https://leetcode.cn/problems/unique-paths-ii/solutions/2466610/dfsji-yi-hua-sou-suo-by-gallant-murdockr-e882/
来源:力扣(LeetCode)

三、LC 64 最小路径和

LC 64 最小路径和
给定一个包含非负整数的 m x n 网格 grid ,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。

说明:每次只能向下或者向右移动一步。
在这里插入图片描述


方法一:动态规划(二维)

代码如下:

class Solution {
public:int minPathSum(vector<vector<int>>& grid) {//定义一个二维状态数组int dp[201][201]={0};//初始化状态数组dp[0][0]=grid[0][0];//获得行数和列数int m=grid.size();int n=grid[0].size();for(int i=0;i<m;i++){for(int j=0;j<n;j++){//正常情况if(i>0 && j>0){dp[i][j]=min(dp[i-1][j],dp[i][j-1])+grid[i][j];}//边界条件else if(i>0) dp[i][j]=dp[i-1][j]+grid[i][j];else if(j>0) dp[i][j]=dp[i][j-1]+grid[i][j];}}return dp[m-1][n-1];}
};

方法二:动态规划(一维)

代码如下:

class Solution {
public:int minPathSum(vector<vector<int>>& grid) {//获取行数和列数int m=grid.size();int n=grid[0].size();//定义一维状态数组int dp[201]={0};//初始化第一行dp[0]=grid[0][0];for(int i=1;i<n;i++){dp[i]=grid[0][i]+dp[i-1];}//状态转移(配合滚动数组优化)for(int i=1;i<m;i++){for(int j=0;j<n;j++){//左边界if(j==0) dp[j]+=grid[i][j];//其他情况else dp[j]=min(dp[j-1],dp[j])+grid[i][j];}}return dp[n-1];}
};

我以前没怎么接触过动态规划,目前就是每天有空看看题,想想解题思路啥的,但愿有效果吧!
在这里插入图片描述

http://www.lryc.cn/news/186888.html

相关文章:

  • 三十三、【进阶】索引的分类
  • VBox启动失败、Genymotion启动失败、Vagrant迁移
  • 一篇短小精悍的文章让你彻底明白KMP算法中next数组的原理
  • CSS盒子定位的扩张
  • SpringBoot整合POI实现Excel文件读写操作
  • 从零开始的力扣刷题记录-第八十七天
  • 【1】c++设计模式——>UML类图的画法
  • SAP UI5 指定 / 变更版本
  • SpringMVC中异常处理详解
  • PPT课件培训视频生成系统实现全自动化
  • Densenet--->比残差力度更大 senet-->本质抑制特征
  • 基于腾讯云的OTA远程升级
  • 如何在VS2022中进行调试bug,调试的快捷键,debug与release之间有什么区别
  • 初识jmeter及简单使用
  • Spring 在多线程环境下如何确保事务一致性
  • [Machine Learning] Learning with Noisy Data
  • C++中有哪些常用的标准库?
  • 软考-信息安全工程师概述
  • 2023-2024年华为ICT网络赛道模拟题库
  • 英特尔参与 CentOS Stream 项目
  • Centos 服务器 MySQL 8.0 快速开启远程访问
  • 充电保护芯片TP4054国产替代完全兼容DP4054DP4054H 锂电充电芯片
  • Java Spring Boot中的爬虫防护机制
  • 状态模式 行为型模式之六
  • JAVA NIO深入剖析
  • 企业电子招投标系统源码之电子招投标系统建设的重点和未来趋势
  • 基于正点原子alpha开发板的第三篇系统移植
  • 数据结构与算法设计分析——贪心算法的应用
  • Leetcode 2895. Minimum Processing Time
  • 学信息系统项目管理师第4版系列21_范围管理