当前位置: 首页 > news >正文

sheng的学习笔记-【中文】【吴恩达课后测验】Course 1 - 神经网络和深度学习 - 第二周测验

课程1_第2周_测验题

目录:目录

第一题

1.神经元计算什么?

A. 【  】神经元计算激活函数后,再计算线性函数(z=Wx+b)

B. 【  】神经元计算一个线性函数(z=Wx+b),然后接一个激活函数

C. 【  】神经元计算一个函数g,它线性地缩放输入x(Wx+b)

D. 【  】神经元先计算所有特征的平均值,然后将激活函数应用于输出

答案:

B.【 √ 】神经元计算一个线性函数(z=Wx+b),然后接一个激活函数

第二题

2.以下哪一个是逻辑回归的损失函数?

A. 【  】 L ( i ) ( y ^ ( i ) , y ( i ) ) = ∣ y ( i ) − y ^ ( i ) ∣ L^{(i)}(\hat{y}^{(i)},y^{(i)})=|y^{(i)} - \hat{y}^{(i)}| L(i)(y^(i),y(i))=y(i)y^(i)

B. 【  】 L ( i ) ( y ^ ( i ) , y ( i ) ) = m a x ( 0 , y ( i ) − y ^ ( i ) ) L^{(i)}(\hat{y}^{(i)},y^{(i)})=max(0,y^{(i)} - \hat{y}^{(i)}) L(i)(y^(i),y(i))=max(0,y(i)y^(i))

C. 【  】 L ( i ) ( y ^ ( i ) , y ( i ) ) = ∣ y ( i ) − y ^ ( i ) ∣ 2 L^{(i)}(\hat{y}^{(i)},y^{(i)})=|y^{(i)} - \hat{y}^{(i)}|^2 L(i)(y^(i),y(i))=y(i)y^(i)2

D. 【  】 L ( i ) ( y ^ ( i ) , y ( i ) ) = − ( y ( i ) l o g ( y ^ ( i ) ) + ( 1 − y ( i ) ) l o g ( 1 − y ^ ( i ) ) ) L^{(i)}(\hat{y}^{(i)},y^{(i)})=-(y^{(i)}log(\hat{y}^{(i)})+(1-y^{(i)})log(1-\hat{y}^{(i)})) L(i)(y^(i),y(i))=(y(i)log(y^(i))+(1y(i))log(1y^(i)))

答案:

D.【 √ 】 L ( i ) ( y ^ ( i ) , y ( i ) ) = − ( y ( i ) l o g ( y ^ ( i ) ) + ( 1 − y ( i ) ) l o g ( 1 − y ^ ( i ) ) ) L^{(i)}(\hat{y}^{(i)},y^{(i)})=-(y^{(i)}log(\hat{y}^{(i)})+(1-y^{(i)})log(1-\hat{y}^{(i)})) L(i)(y^(i),y(i))=(y(i)log(y^(i))+(1y(i))log(1y^(i)))

第三题

3.假设img是一个(32, 32, 3)数组,表示一个32x32图像,它有三个颜色通道:红色、绿色和蓝色。如何将其重塑为列向量?

A. 【  】x = img.reshape((1, 32 * 32, 3))

B. 【  】x = img.reshape((32 * 32 * 3, 1))

C. 【  】x = img.reshape((3, 32 * 32))

D. 【  】x = img.reshape((32 * 32, 3))

答案:

B.【 √ 】x = img.reshape((32 * 32 * 3, 1))

第四题

4.考虑以下两个随机数组a和b:

a = np.random.randn(2, 3) # a.shape = (2, 3)
b = np.random.randn(2, 1) # b.shape = (2, 1)
c = a + b

c的维度是什么?

A. 【  】c.shape = (3, 2)

B. 【  】c.shape = (2, 1)

C. 【  】c.shape = (2, 3)

D. 【  】计算不成立因为这两个矩阵维度不匹配

答案:

C.【 √ 】c.shape = (2, 3)

第五题

5.考虑以下两个随机数组a和b:

a = np.random.randn(4, 3) # a.shape = (4, 3)
b = np.random.randn(3, 2) # b.shape = (3, 2)
c = a * b

c的维度是什么?

A. 【  】c.shape = (4, 3)

B. 【  】c.shape = (3, 3)

C. 【  】c.shape = (4, 2)

D. 【  】计算不成立因为这两个矩阵维度不匹配

答案:

D.【 √ 】计算不成立因为这两个矩阵维度不匹配

Note:运算符 “*” 说明了按元素乘法来相乘,但是元素乘法需要两个矩阵之间的维数相同,所以这将报错,无法计算。

第六题

6.假设每个示例有 n x n_x nx个输入特性, X = [ X ( 1 ) , X ( 2 ) … , X ( m ) ] X=[X^{(1)},X^{(2)}…,X^{(m)}] X=[X(1)X(2),X(m)] X X X的维数是多少?

A. 【  】(m, 1)

B. 【  】(1, m)

C. 【  】( n x n_x nx, m)

D. 【  】(m, n x n_x nx)

答案:

C.【 √ 】( n x n_x nx, m)

第七题

7.np.dot(a,b)对a和b的进行矩阵乘法,而a * b执行元素的乘法,考虑以下两个随机数组a和b:

a = np.random.randn(12288, 150) # a.shape = (12288, 150)
b = np.random.randn(150, 45) # b.shape = (150, 45)
c = np.dot(a, b)

c的维度是什么?

A. 【  】c.shape = (12288, 150)

B. 【  】c.shape = (150, 150)

C. 【  】c.shape = (12288, 45)

D. 【  】计算不成立因为这两个矩阵维度不匹配

答案:

C.【 √ 】c.shape = (12288, 45)

第八题

8.请考虑以下代码段:

#a.shape = (3,4)  
#b.shape = (4,1)  
for i in range(3):  for j in range(4):  c[i][j] = a[i][j] + b[j]

如何将之矢量化?

A. 【  】c = a + d

B. 【  】c = a +b.T

C. 【  】c = a.T + b.T

D. 【  】c = a.T + b

答案:

B.【 √ 】c = a +b.T

Note:a的每一行元素,逐行相加b的每一行元素

第九题

9.请考虑以下代码段:

a = np.random.randn(3, 3)
b = np.random.randn(3, 1)
c = a * b

c的维度是什么?

A. 【  】这会触发广播机制,b会被复制3次变成(3, 3),而 * 操作是元素乘法,所以c.shape = (3, 3)

B. 【  】这会触发广播机制,b会被复制3次变成(3, 3),而 * 操作是矩阵乘法,所以c.shape = (3, 3)

C. 【  】这个操作将一个3x3矩阵乘以一个3x1的向量,所以c.shape = (3, 1)

D. 【  】这个操作会报错,因为你不能用 * 对这两个矩阵进行操作,你应该用np.dot(a, b)

答案:

A.【 √ 】这会触发广播机制,b会被复制3次变成(3,3),而 * 操作是元素乘法,所以c.shape = (3, 3)

第十题

10.请考虑以下计算图:
在这里插入图片描述

输出J是?

A. 【  】J = (c - 1) * (b + a)

B. 【  】J = (a - 1) * (b + c)

C. 【  】J = a * b + b * c + a * c

D. 【  】J = (b - 1) * (c + a)

答案:

B.【 √ 】J = (a - 1) * (b + c)

http://www.lryc.cn/news/186798.html

相关文章:

  • 前端代码格式化规范总结
  • Windows10打开应用总是会弹出提示窗口的解决方法
  • 易点易动固定资产管理系统: 帮助您应对2023年年终固定资产大盘点
  • OpenGLES:绘制一个混色旋转的3D立方体
  • Maven(4)-利用intellij idea创建maven 多模块项目
  • 8年测试老鸟,性能测试-数据库连接池问题定位/分析,一篇打通...
  • 【Sentinel】Sentinel原码分析
  • 计算机竞赛 题目:基于深度学习的人脸表情识别 - 卷积神经网络 竞赛项目 代码
  • 基于aarch64分析kernel源码 五:idle进程(0号进程)
  • 【Linux】 vi / vim 使用
  • Leetcode hot 100之双指针(快慢指针、滑动窗口)
  • Bridge Champ助力我国桥牌阔步亚运, Web3游戏为传统项目注入创新活力
  • 云原生微服务 第六章 Spring Cloud中使用OpenFeign
  • uniapp-vue3 抖音小程序开发(上线项目开源)
  • 基于微信小程序的个人健康数据管理平台设计与实现(源码+lw+部署文档+讲解等)
  • 真香!Jenkins 主从模式解决问题So Easy~
  • Win10系统打开组策略编辑器的两种方法
  • git 的行结束符
  • buuctf PWN warmup_csaw_2016
  • C++中的对象切割(Object slicing)问题
  • VxeTable 表格组件推荐
  • 好消息:用 vue3+layui 共同铸造我们新的项目
  • JS中 split(/s+/) 和 split(‘ ‘)的区别以及split()详细解法,字符串分割正则用法
  • MySQL性能调优
  • 如何解决openal32.dll丢失,有什么办法解决
  • Nginx 如何配置http server 、负载均衡(反向代理)
  • windows docker desktop配置加速地址
  • 戏剧影视设计制作虚拟仿真培训课件提升学生的参与感
  • Transformer预测 | Pytorch实现基于Transformer的锂电池寿命预测(NASA数据集)
  • 取出SQLite数据(基本游标)