当前位置: 首页 > news >正文

Go 并发编程

并发编程

1.1 并发与并⾏
在这里插入图片描述
并⾏与并发是两个不同的概念,普通解释:

  • 并发:交替做不同事情的能⼒
  • 并⾏:同时做不同事情的能⼒

如果站在程序员的⻆度去解释是这样的:

  • 并发:不同的代码块交替执⾏
  • 并⾏:不同的代码块同时执⾏

并发和并⾏都是为了提⾼机器硬件利⽤率,提升应⽤运⾏效率。并⾏和并发就是为达⽬的的两个⼿段。
并⾏可以提升CPU核⼼数,并发则是通过系统设计,⽐如分时复⽤系统,多进程,多线程的开发⽅法,
不过在对并发的⽀持上,Go语⾔是天⽣最好的,因为它设计的理念就是并发,⽽且是在语⾔层⾯实现的
并发。

1.2 Goroutine
如果对线程和进程有所了解的话,我们可以这样给进程和线程下⼀个专业点的定义。

  • 线程是最⼩的执⾏单位
  • 进程是最⼩的资源申请单位

在Go语⾔当中,有⼀个存在是⽐线程还要⼩的执⾏单位,那就是Goroutine,翻译上习惯叫例程或协
程,不过我们遵循原汁原味还是直接⽤Goroutine来称呼它。Go语⾔开发者为了实现并⽀持
Goroutine,特意花了⼤⼒⽓来开发⼀个语⾔层⾯的调度算法。
具体调度算法详情介绍可以查看英⽂原⽂:调度算法链接

简单理解的话,⾸先要明确Go语⾔调度算法中提到的三个字⺟,M,P,G,分别代表线程,上下⽂以
及Goroutine。
在这里插入图片描述
在操作系统层⾯线程仍然是最⼩的执⾏单位,在进程调度的时候,CPU需要在不同进程间切换,此时需
要保留运⾏的上下⽂信息,也就是前⾯提到的P,⾄于G则是代表了Go语⾔当中的Goroutine。

在这里插入图片描述
每个线程M有⼀个⾃⼰的上下⽂P,同⼀时刻,每个线程内部可以执⾏⼀个Groutine代码,如上图所
示,每个线程有⼀个⾃⼰的调度队列,这个队列⾥存放的就是若⼲个Goroutine。

在这里插入图片描述
当线程发⽣系统调⽤时,该线程会被阻塞,此时为了提⾼运⾏效率,Goroutine调度算法会将该阻塞的
线程Goroutine队列转移到其他线程上。当线程执⾏完系统调⽤后,⼜会从其他线程的队列中“借”⼀些
Goroutine过来。

1.3 Goroutine启动
在⼀台主机上,线程启动的数量是有上限的,这个上限并⾮可以启动的上限,⽽是不影响系统性能的上
限。Goroutine在并发上则没有这⽅⾯的顾虑,可以随⼼所欲的启动,不⽤担⼼数量的问题,当然这归
功于Go语⾔的调度算法。
那么Goroutine如何启动呢?其实在我们之前写的代码中,都存在⼀个Goroutine,就是我们的主函
数,我们习惯叫他main-goroutine。如果我们想再启动⼀个Goroutine,也⾮常容易,直接关键字go再
加上函数调⽤就⾏了。

go call_func()
package mainimport "fmt"func main() {fmt.Println("begin call goroutine")//启动goroutinego func() {fmt.Println("I am a goroutine!")}()fmt.Println("end call goroutine")
}

执⾏这个代码,我们⼤概率是看不到“I am a goroutine!”这句话的,因为go func()这⾥创建的Goroutine
或者尚未创建成功时,main-goroutine已经结束执⾏了,main-goroutine结束执⾏,也就代表着进程
退出,那么不会有任何代码被执⾏了!那么⼤家考虑⼀下,如何解决这个问题呢?

1.5 Go语⾔运⾏时
所谓运⾏时,就是运⾏的时刻,Go语⾔的运⾏时就是描述与进程运⾏相关的信息,我们可以使⽤
runtime包来显示⼀些运⾏时的信息。

1.5.1 GOMAXPROCS

func GOMAXPROCS(n int) int
//当n<=1时,查看当前进程可以并⾏的goroutine最⼤数量(CPU核⼼数)
//当n>1时,代表设置可并⾏的最⼤goroutine数量

这个函数可以帮我们查看或设置当前进程的最⼤CPU核⼼数。

2. 同步
同步在不同的语境代表不同的含义,在数据库中是指数据的同步,在分布式系统中是指系统内的数据⼀
致,⽽在语⾔层⾯的同步是指运⾏时步调⼀致,避免竞争,有先有后。

2.1 如何做到同步
为了提⾼CPU的使⽤效率,我们需要启动多个Goroutine,⽽多个Goroutine⽐线程的颗粒度还⼩,他
们之间必然存在争抢同⼀资源的现象,就像我们在线程中要控制同步⼀样,多个Goroutine在访问同⼀
共享资源时,我们仍然要控制同步。

如何做到最直接的同步,可以借鉴我们⽣活中的例⼦,在⽕⻋上我们去卫⽣间的时候,都会把⻔锁上,
这样别⼈就没法进来了。在这个例⼦中,我们和其他⼈就是Goroutine,⽽卫⽣间就是那个共享资源,
我们不允许发⽣⼤家⼀起进⼊使⽤的情况,⽽解决这个问题的关键就是锁!
那么Go语⾔给我们提供了哪些同步机制呢?主要有如下⽅式:

  • WaitGroup 计数等待法
  • Once 执⾏⼀次
  • Mutex 互斥锁
  • RWMutex 读写锁
  • Cond 条件变量
  • channel 通道,Go语⾔的最⼤特性

在上述⽅法中,除了channel,其余的同步⽅式都在Go语⾔的sync包当中。

2.2 WaitGroup
Go语⾔的同步⽅式很多,WaitGroup的实现⽅式很巧妙,主要只有3个API。

//增加计数
func (wg *WaitGroup) Add(delta int)
//减少计数
func (wg *WaitGroup) Done()
//阻塞等待计数变为0
func (wg *WaitGroup) Wait()

它的核⼼思想是当启动⼀个Goroutine时,使⽤Add添加⼀个计数器,⽽Wait的功能是阻塞等待计数器
归0,Done的作⽤则是Goroutine运⾏结束后执⾏此句话清掉计数器的⼀个计数。
利⽤WaitGroup的特性,我们可以优雅的实现⼀个例⼦:启动10个Goroutine,让他们顺序退出,
main-goroutine等待所有Goroutine退出后才可退出。

package mainimport ("fmt""sync""time"
)var w sync.WaitGroupfunc main() {for i := 0; i < 10; i++ {w.Add(1) //添加⼀个要监控的Goroutine数量go func(num int) {time.Sleep(time.Second * time.Duration(num))fmt.Printf("I am %d Goroutine\n", num)w.Done() //释放⼀个}(i)}w.Wait() //阻塞等待
}
I am 0 Goroutine
I am 1 Goroutine
I am 2 Goroutine
I am 3 Goroutine
I am 4 Goroutine
I am 5 Goroutine
I am 6 Goroutine
I am 7 Goroutine
I am 8 Goroutine
I am 9 Goroutine

2.3 Mutex互斥锁
提到互斥锁,我们通常会提到⼀个临界区的概念,Goroutine在准备访问共享数据时,我们就认为它进
⼊了临界区。
使⽤互斥锁的核⼼思想就是进⼊临界区之前先要申请锁,申请到锁的Goroutine继续执⾏,⽽没有申请
到的Goroutine则阻塞等待别⼈释放这个mutex,这样就可以有效的控制Goroutine之间竞争的问题。
下述代码就是⼀个存在数据修改竞争的例⼦,循环1000次对⼀个数据⾃增,⽬标的输出结果是1000,
但执⾏下⾯的代码很难获得1000。

package mainimport ("fmt""sync"
)var x = 0func increment(wg *sync.WaitGroup) {x = x + 1wg.Done()
}
func main() {var w sync.WaitGroupfor i := 0; i < 1000; i++ {w.Add(1)go increment(&w)}w.Wait()fmt.Println("final value of x", x)
}
final value of x 974

上述代码如果在进⼊临界区前使⽤mutex,就可以很好的解决该问题。代码主要修改increment函数即
可:

func increment(wg *sync.WaitGroup) {mutex.Lock() //上锁x = x + 1 //临界区mutex.Unlock() //释放锁wg.Done()
}

修改后再执⾏代码,就可以很好的看到效果。

final value of x 1000

2.4 RWMutex

RWMutex我们可以称其为读写锁,它算是mutex的改进版,因为mutex的特点是排他性,只要有⼀个
上锁成功了,其余⼈都不可以使⽤。但在实际开发过程中,经常会出现多个Goroutine去访问相同的共
享资源,只不过这些Goroutine中有些是读数据,有些是写数据。开发者肯定明⽩,读数据不会对数据
造成影响,这样理论上来说,⼀个读的Goroutine上锁了,其余的读Goroutine理应也可以访问,这样
就出现了读写锁。对于读写锁来说,关键是掌握它的原则:

  • 读共享
  • 写独占
  • 写优先级⾼
package mainimport ("fmt""sync""time"
)var rwlock sync.RWMutex
var wg sync.WaitGroup
var x = 0func go_reader(num int) {for {rwlock.RLock()fmt.Printf("I am %d reader goroutine x = %d\n", num, x)time.Sleep(time.Millisecond * 2)rwlock.RUnlock()}wg.Done()
}
func go_writer(num int) {for {rwlock.Lock()x += 1fmt.Printf("I am %d writer goroutine x = %d\n", num, x)time.Sleep(time.Millisecond * 2)rwlock.Unlock()}wg.Done()
}
func main() {wg.Add(10)for i := 0; i < 7; i++ {go go_reader(i)}for i := 0; i < 3; i++ {go go_writer(i)}wg.Wait()
}

2.5 Once
在很多时候,我们会有⼀个需求,那就是虽然多个Goroutine都要运⾏⼀段代码,但我们却希望这段代
码只能被⼀个Goroutine运⾏,也就是说只被允许运⾏⼀次。在Go语⾔当中,就给我们提供了这样的机
制 – Once。

package mainimport ("fmt""sync"
)func main() {var count intvar once sync.Oncevar wg sync.WaitGroupfor i := 0; i < 100; i++ {wg.Add(1)go func() {once.Do(func() {count += 1 //确保只执⾏⼀次})wg.Done()}()}wg.Wait()fmt.Printf("Count is %d\n", count)
}
Count is 1
http://www.lryc.cn/news/186678.html

相关文章:

  • 鱼眼相机去畸变(图像拉直/展开/矫正)算法及实战总结
  • es6 数据类型
  • 【postgresql】
  • 【C++】空间配置器 allocator:原理及底层解析
  • 微信小程序 movable-area 区域拖动动态组件演示
  • 隔离上网,安全上网
  • NOSQL Redis 数据持久化 RDB、AOF(二) 恢复
  • UDP通信
  • Bootstrap对溢出内容的两种处理:滚动条和隐藏两种方式
  • elasticsearch基本语法
  • Maven Spring jar包启动报错 排查
  • LeetCode-2485-找出中枢整数
  • nano pi m1配置脚本(全志H3)
  • linux--gdb的使用
  • JVM命令行监控工具
  • 系统架构设计:4 论微服务架构及其应用
  • 【C++设计模式之建造者模式:创建型】分析及示例
  • C++day03(动态内存、类中特殊成员函数)
  • 【Leetcode】179. 最大数
  • ArduPilot开源飞控之AP_Baro_MSP
  • openGauss学习笔记-94 openGauss 数据库管理-访问外部数据库-mysql_fdw
  • UML图 - 类图(Class Diagram)
  • sheng的学习笔记-【中文】【吴恩达课后测验】Course 2 - 改善深层神经网络 - 第二周测验
  • Nacos 监控手册
  • 项目需求分析5大常见问题及解决方案
  • C#学习系列相关之多线程(四)----async和await的用法
  • 极智AI | 大模型优化之KV Cache
  • Android 使用 registerForActivityResult() 打开系统相册或相机获取图像
  • 如何制作网页 ico
  • golang gorm 增删改查以及使用原生SQL(以操作mysql为例)