当前位置: 首页 > news >正文

HuggingFace Transformers教程(1)--使用AutoClass加载预训练实例

知识的搬运工又来啦

☆*: .。. o(≧▽≦)o .。.:*☆ 

【传送门==>原文链接:】https://huggingface.co/docs/transformers/autoclass_tutorial

 🚗🚓🚕🛺🚙🛻🚌🚐🚎🚑🚒🚚🚛🚜🚘🚔🚖🚍🚗🚓🚕🛺🚙🛻🚌🚐🚎🚑🚒🚚

由于存在许多不同的Transformer架构,因此为您的检查点(checkpoint)创建一个可能很具有挑战性。作为🤗Transformers核心理念的一部分,使库易于使用、简单和灵活,AutoClass自动推断并从给定的检查点加载正确的架构。from_pretrained()】方法允许您快速加载任何架构的预训练模型因此您无需花费时间和资源从头开始训练模型。生产此类检查点不可知代码意味着,如果您的代码适用于一个检查点,则它将适用于另一个检查点——只要它是为类似的任务进行训练的,即使架构不同。

请记住,架构是指模型的骨架,检查点是给定架构的权重。例如,BERT是一种架构,而bert-base-uncased是一个检查点。模型是一个通用术语,可以表示架构或检查点。

 

在本教程中,我们可以学习:

- 加载预训练的分词器。
- 加载预训练的图像处理器。
- 加载预训练的特征提取器。
- 加载预训练的处理器。
- 加载预训练模型。

AutoTokenizer

几乎每个NLP任务都始于分词器。分词器将您的输入转换为模型可以处理的格式。

使用AutoTokenizer.from_pretrained()加载分词器:

from transformers import AutoTokenizertokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")

然后按照下面所示进行分词:

sequence = "In a hole in the ground there lived a hobbit."
print(tokenizer(sequence))
{'input_ids': [101, 1999, 1037, 4920, 1999, 1996, 2598, 2045, 2973, 1037, 7570, 10322, 4183, 1012, 102], 'token_type_ids': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}

AutoImageProcessor

对于视觉任务,图像处理器将图像处理成正确的输入格式。

from transformers import AutoImageProcessorimage_processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224")

AutoFeatureExtractor

对于音频任务,特征提取器将音频信号处理成正确的输入格式。

使用AutoFeatureExtractor.from_pretrained()加载特征提取器:

from transformers import AutoFeatureExtractorfeature_extractor = AutoFeatureExtractor.from_pretrained("ehcalabres/wav2vec2-lg-xlsr-en-speech-emotion-recognition"
)

AutoProcessor

多模态任务需要一个处理器来结合两种类型的预处理工具。例如,LayoutLMV2模型需要一个图像处理器来处理图像和一个分词器来处理文本;处理器将两者结合起来。

使用AutoProcessor.from_pretrained()加载处理器:

from transformers import AutoProcessorprocessor = AutoProcessor.from_pretrained("microsoft/layoutlmv2-base-uncased")

AutoModel

Pytorch

最后,AutoModelFor类允许您加载给定任务的预训练模型(请参见此处以获取可用任务的完整列表)。例如,使用AutoModelForSequenceClassification.from_pretrained()加载序列分类模型:

from transformers import AutoModelForSequenceClassificationmodel = AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased")

可以轻松地重复使用相同的检查点,以加载不同任务的架构:

from transformers import AutoModelForTokenClassificationmodel = AutoModelForTokenClassification.from_pretrained("distilbert-base-uncased")

对于PyTorch模型,from_pretrained()方法使用torch.load(),它在内部使用pickle,并已知存在安全问题。一般来说,永远不要加载可能来自不可信源或可能被篡改的模型。针对Hugging Face Hub上托管的公共模型,这种安全风险在一定程度上得到了缓解,因为每次提交时都会对其进行恶意软件扫描。请参阅Hub文档以了解最佳实践,例如使用GPG进行签名提交验证。

TensorFlow和Flax检查点不受影响,并且可以在PyTorch架构中使用from_pretrained方法的from_tf和from_flax参数来加载,以绕过此问题。

 通常,我们建议使用AutoTokenizer类和AutoModelFor类来加载预训练模型的实例。这将确保您每次都加载正确的架构。在下一个教程中,学习如何使用新加载的分词器、图像处理器、特征提取器和处理器对数据集进行预处理,以进行微调。

TensorFlow

最后,TFAutoModelFor类允许您加载给定任务的预训练模型(请参见此处以获取可用任务的完整列表)。例如,使用TFAutoModelForSequenceClassification.from_pretrained()加载序列分类模型:

from transformers import TFAutoModelForSequenceClassificationmodel = TFAutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased")

可以轻松地重复使用相同的检查点,以加载不同任务的架构:

from transformers import TFAutoModelForTokenClassificationmodel = TFAutoModelForTokenClassification.from_pretrained("distilbert-base-uncased")

通常,我们建议使用AutoTokenizer类和TFAutoModelFor类来加载预训练模型的实例。这将确保您每次都加载正确的架构。在下一个教程中,学习如何使用新加载的分词器、图像处理器、特征提取器和处理器对数据集进行预处理,以进行微调。

http://www.lryc.cn/news/183667.html

相关文章:

  • Qt获取当前所用的Qt版本、编译器、位数等信息
  • 《C和指针》笔记31:多维数组的数组名、指向多维数组的指针、作为函数参数的多维数组
  • 【伪彩色图像处理】将灰度图像转换为彩色图像研究(Matlab代码实现)
  • Go Gin Gorm Casbin权限管理实现 - 2. 使用Gorm存储Casbin权限配置以及`增删改查`
  • DNDC模型的温室气体排放分析
  • vue、全局前置守卫
  • OpenWRT、Yocto 、Buildroot和Ubuntu有什么区别
  • 数据挖掘(3)特征化
  • 【RabbitMQ 实战】08 集群原理剖析
  • 2023年 2月3月 工作经历
  • selenium京东商城爬取
  • 用pandas处理数据时,使变量能够在不同的Notebook会话页面进行传递,魔法命令%store
  • 选择适合户外篷房企业的企业云盘解决方案
  • 松鼠搜索算法(SSA)(含MATLAB代码)
  • 折半+dp之限制转状态+状压:CF1767E
  • 如何写出优质代码
  • ChatGLM2-6B的通透解析:从FlashAttention、Multi-Query Attention到GLM2的微调、源码解读
  • 3D人脸生成的论文
  • 解决问题:可以用什么方式实现自动化部署
  • 【数据结构】链表栈
  • Android笔记:Android 组件化方案探索与思考
  • MeterSphere v2.10.X-lts 双节点HA部署方案
  • Java进阶篇--网络编程
  • PyTorch入门之【CNN】
  • 马斯洛需求层次模型之安全需求之云安全浅谈
  • Pikachu靶场——远程命令执行漏洞(RCE)
  • 【WSN】无线传感器网络 X-Y 坐标到图形视图和位字符串前缀嵌入方法研究(Matlab代码实现)
  • Linux定时任务
  • 【Overload游戏引擎分析】画场景网格的Shader
  • 【JavaEE】多线程进阶(一)饿汉模式和懒汉模式