当前位置: 首页 > news >正文

数据结构与算法之堆: Leetcode 23. 合并 K 个升序链表 (Typescript版)

合并 K 个升序链表

  • https://leetcode.cn/problems/merge-k-sorted-lists/

描述

  • 给你一个链表数组,每个链表都已经按升序排列
  • 请你将所有链表合并到一个升序链表中,返回合并后的链表

示例 1

输入:lists = [[1,4,5],[1,3,4],[2,6]]
输出:[1,1,2,3,4,4,5,6]
解释:链表数组如下:
[1->4->5,1->3->4,2->6
]
将它们合并到一个有序链表中得到。
1->1->2->3->4->4->5->6

示例 2

输入:lists = []
输出:[]

示例 3

输入:lists = [[]]
输出:[]

提示

  • k == lists.length
  • 0 <= k <= 1 0 4 10^4 104
  • 0 <= lists[i].length <= 500
  • - 1 0 4 10^4 104 <= lists[i][j] <= 1 0 4 10^4 104
  • lists[i] 按 升序 排列
  • lists[i].length 的总和不超过 1 0 4 10^4 104

算法实现

1 )使用堆

/*** Definition for singly-linked list.* class ListNode {*     val: number*     next: ListNode | null*     constructor(val?: number, next?: ListNode | null) {*         this.val = (val===undefined ? 0 : val)*         this.next = (next===undefined ? null : next)*     }* }*/class MinHeap {heap: Array<ListNode | null> = [];// 交换节点位置swap(i1, i2) {[this.heap[i1], this.heap[i2]] = [this.heap[i2], this.heap[i1]];}// 获得父节点getParentIndex(i) {return (i - 1) >> 1;}// 获取左子节点getLeftIndex(i) {return (i << 1) + 1; // 极客写法}// 获取右子节点getRightIndex(i) {return (i << 1) + 2;}// 上移操作封装 是个递归shiftUp(i) {// 如果到了堆顶元素,index是0,则不要再上移了if(!i) return;// 获得父节点下标: piconst pi = this.getParentIndex(i);// 开始做比较if(this.heap[pi]?.val > this.heap[i].val) {// 实现交换this.swap(pi, i);// 继续尝试上移操作this.shiftUp(pi);}}// 下移操作shiftDown(i) {// 如果到了堆尾元素,则不要再下移了if(i >= this.heap.length - 1) return;let li = this.getLeftIndex(i); // 左孩子索引let ri = this.getRightIndex(i); // 右孩子索引// 左孩子节点的值 < 当前节点的值if(this.heap[li]?.val < this.heap[i].val) {this.swap(li, i);this.shiftDown(li);}// 同样,对右孩子节点的值 < 当前节点的值if(this.heap[ri]?.val < this.heap[i].val) {this.swap(ri, i);this.shiftDown(ri);}}// 插入insert(value) {this.heap.push(value);this.shiftUp(this.heap.length - 1);}// 删除堆顶pop() {if(this.size() === 1) return this.heap.shift();let top = this.heap[0];// 变相删除堆顶, 堆尾元素移动到堆顶this.heap[0] = this.heap.pop(); // 删除数组的最后一个元素并返回,返回值赋值给堆顶元素// 执行堆顶下移操作,维持堆的有序性this.shiftDown(0);return top;}// 获取堆顶peak() {return this.heap[0];}// 获取堆的大小size() {return this.heap.length;}
}function mergeKLists(lists: Array<ListNode | null>): ListNode | null {let res = new ListNode(0);let p = res;const h = new MinHeap();// 通过输入来构建堆结构// 三个链表,堆中存入的是三个链表的头lists.forEach(l => {l && h.insert(l); // l是个链表,其实用的是链表头表示,也就是链表的第一个元素})// while循环,每一轮pk的都是堆内的元素// 谁出队,就把谁的下一个入堆,逐个比较// 最终堆空了,比较全部结束while(h.size()) {let n = h.pop(); // 弹出堆顶元素,最小值p.next = n; // 将堆顶元素挂载在新链表上p = p.next; // 链表指针移位,为下次连接做准备n.next && h.insert(n.next) // 将弹出的堆顶元素的下一个元素入堆,进行重新构建堆结构}return res.next; // 返回的是next, 因为其第一个节点是我们new出来,用于连接的,所以不包含第一个节点
}
  • 时间复杂度 O(nlogk)
    • forEach O(k), k是链表数量
    • while循环遍历了所有链表的所有节点 O(n),n是所有链表节点之和
    • 并且堆操作是O(logk), 两者结合:O(nlogk)
    • 整体:O(nlogk)
  • 空间复杂度 O(k)
    • 就是堆的大小
  • 堆能高效、快速找出最大值和最小值,时间复杂度O(1),堆顶是最大值或最小值
  • 找出第K个最大(小)元素
    • 构建一个容量为k的堆,让每个元素都插入这个堆
    • 保持容量始终为k, 最终堆顶就是最大元素或最小元素
  • 这个解法不算精妙,但是是两个数据结构(堆和链表)融合解题的典型
http://www.lryc.cn/news/181773.html

相关文章:

  • 代码随想录算法训练营第五十七天 | 392.判断子序列 115.不同的子序列
  • Kafka日志索引详解以及生产常见问题分析与总结
  • vue中 css scoped原理
  • tf.compat.v1.global_variables()
  • 登录注册实现
  • Push rejected: Push to origin/master was rejected
  • 在线OJ项目核心思路
  • Spring MVC:数据绑定
  • STM32CubeMX学习笔记-USB接口使用(HID按键)
  • C#,数值计算——Ranq2的计算方法与源程序
  • C/C++ 数据结构 - 链表
  • 【算法基础】一文掌握十大排序算法,冒泡排序、插入排序、选择排序、归并排序、计数排序、基数排序、希尔排序和堆排序
  • javascript二维数组(3):指定数组元素的特定属性进行搜索
  • 使用Qt进行HTTP通信的方法
  • 第45节——页面中修改redux里的数据
  • 软考 系统架构设计师系列知识点之软件架构风格(2)
  • 【C++11】Lambda 表达式:基本使用 和 底层原理
  • 【网络安全---ICMP报文分析】Wireshark教程----Wireshark 分析ICMP报文数据试验
  • 【Docker】Docker的应用包含Sandbox、PaaS、Open Solution以及IT运维概念的详细讲解
  • Java Applet基础
  • 【记录】IDA|IDA怎么查看当前二进制文件自动分析出来的内存分布情况(内存范围和读写性)
  • LIMS实验室信息管理系统源码 基于计算机的数据处理技术、数据存储技术、网络传输技术、自动化仪器分析技术于一体
  • 有效括号相关
  • 浅谈泛型擦除
  • nodejs+vue校园跑腿系统elementui
  • Redis Cluster Cron调度
  • Redis Cluster Gossip Protocol: Message
  • 【JVM】第四篇 垃圾收集器ParNewCMS底层三色标记算法详解
  • STM32复习笔记(四):独立看门狗IWDG
  • SpringBoot中常用注解的含义