当前位置: 首页 > news >正文

【教程】Autojs使用OpenCV进行SIFT/BRISK等算法进行图像匹配

转载请注明出处:小锋学长生活大爆炸[xfxuezhang.cn]

        此代码可以替代内置的images.findImage函数使用,但可能会误匹配,如果是对匹配结果要求比较高的,还是得谨慎使用。


runtime.images.initOpenCvIfNeeded();
importClass(java.util.ArrayList);
importClass(java.util.List);
importClass(java.util.LinkedList);
importClass(org.opencv.imgproc.Imgproc);
importClass(org.opencv.imgcodecs.Imgcodecs);
importClass(org.opencv.core.Core);
importClass(org.opencv.core.Mat);
importClass(org.opencv.core.MatOfDMatch);
importClass(org.opencv.core.MatOfKeyPoint);
importClass(org.opencv.core.MatOfRect);
importClass(org.opencv.core.Size);
importClass(org.opencv.features2d.DescriptorMatcher);
importClass(org.opencv.features2d.Features2d);
importClass(org.opencv.features2d.SIFT);
importClass(org.opencv.features2d.ORB);
importClass(org.opencv.features2d.BRISK);
importClass(org.opencv.features2d.AKAZE);
importClass(org.opencv.features2d.BFMatcher);
importClass(org.opencv.core.MatOfPoint2f);
importClass(org.opencv.calib3d.Calib3d);
importClass(org.opencv.core.CvType);
importClass(org.opencv.core.Point);
importClass(org.opencv.core.Scalar);
importClass(org.opencv.core.MatOfByte);/** 用法示例:* var image1 = captureScreen();* var image2 = images.read('xxxx');* match(image1, image2);*/function match(img1, img2, method) {console.time("匹配耗时");// 指定特征点算法SIFTvar match_alg = null;if(method == 'sift') {match_alg = SIFT.create();}else if(method == 'orb') {match_alg = ORB.create();}else if(method == 'brisk') {match_alg = BRISK.create();}else {match_alg = AKAZE.create();}var bigTrainImage = Imgcodecs.imdecode(new MatOfByte(images.toBytes(img1)), Imgcodecs.IMREAD_UNCHANGED);var smallTrainImage = Imgcodecs.imdecode(new MatOfByte(images.toBytes(img2)), Imgcodecs.IMREAD_UNCHANGED);// 转灰度图// console.log("转灰度图");var big_trainImage_gray = new Mat(bigTrainImage.rows(), bigTrainImage.cols(), CvType.CV_8UC1);var small_trainImage_gray = new Mat(smallTrainImage.rows(), smallTrainImage.cols(), CvType.CV_8UC1);Imgproc.cvtColor(bigTrainImage, big_trainImage_gray, Imgproc.COLOR_BGR2GRAY);Imgproc.cvtColor(smallTrainImage, small_trainImage_gray, Imgproc.COLOR_BGR2GRAY);// 获取图片的特征点// console.log("detect");var big_keyPoints = new MatOfKeyPoint();var small_keyPoints = new MatOfKeyPoint();match_alg.detect(bigTrainImage, big_keyPoints);match_alg.detect(smallTrainImage, small_keyPoints);// 提取图片的特征点// console.log("compute");var big_trainDescription = new Mat(big_keyPoints.rows(), 128, CvType.CV_32FC1);var small_trainDescription = new Mat(small_keyPoints.rows(), 128, CvType.CV_32FC1);match_alg.compute(big_trainImage_gray, big_keyPoints, big_trainDescription);match_alg.compute(small_trainImage_gray, small_keyPoints, small_trainDescription);// console.log("matcher.train");var matcher = new BFMatcher();matcher.clear();var train_desc_collection = new ArrayList();train_desc_collection.add(big_trainDescription);// vector<Mat>train_desc_collection(1, trainDescription);matcher.add(train_desc_collection);matcher.train();// console.log("knnMatch");var matches = new ArrayList();matcher.knnMatch(small_trainDescription, matches, 2);//对匹配结果进行筛选,依据distance进行筛选// console.log("对匹配结果进行筛选");var goodMatches = new ArrayList();var nndrRatio = 0.8;var len = matches.size();for (var i = 0; i < len; i++) {var matchObj = matches.get(i);var dmatcharray = matchObj.toArray();var m1 = dmatcharray[0];var m2 = dmatcharray[1];if (m1.distance <= m2.distance * nndrRatio) {goodMatches.add(m1);}}var matchesPointCount = goodMatches.size();//当匹配后的特征点大于等于 4 个,则认为模板图在原图中,该值可以自行调整if (matchesPointCount >= 4) {log("模板图在原图匹配成功!");var templateKeyPoints = small_keyPoints;var originalKeyPoints = big_keyPoints;var templateKeyPointList = templateKeyPoints.toList();var originalKeyPointList = originalKeyPoints.toList();var objectPoints = new LinkedList();var scenePoints = new LinkedList();var goodMatchesList = goodMatches;var len = goodMatches.size();for (var i = 0; i < len; i++) {var goodMatch = goodMatches.get(i);objectPoints.addLast(templateKeyPointList.get(goodMatch.queryIdx).pt);scenePoints.addLast(originalKeyPointList.get(goodMatch.trainIdx).pt);}var objMatOfPoint2f = new MatOfPoint2f();objMatOfPoint2f.fromList(objectPoints);var scnMatOfPoint2f = new MatOfPoint2f();scnMatOfPoint2f.fromList(scenePoints);//使用 findHomography 寻找匹配上的关键点的变换var homography = Calib3d.findHomography(objMatOfPoint2f, scnMatOfPoint2f, Calib3d.RANSAC, 3);/*** 透视变换(Perspective Transformation)是将图片投影到一个新的视平面(Viewing Plane),也称作投影映射(Projective Mapping)。*/var templateCorners = new Mat(4, 1, CvType.CV_32FC2);var templateTransformResult = new Mat(4, 1, CvType.CV_32FC2);var templateImage = smallTrainImage;var doubleArr = util.java.array("double", 2);doubleArr[0] = 0;doubleArr[1] = 0;templateCorners.put(0, 0, doubleArr);doubleArr[0] = templateImage.cols();doubleArr[1] = 0;templateCorners.put(1, 0, doubleArr);doubleArr[0] = templateImage.cols();doubleArr[1] = templateImage.rows();templateCorners.put(2, 0, doubleArr);doubleArr[0] = 0;doubleArr[1] = templateImage.rows();templateCorners.put(3, 0, doubleArr);//使用 perspectiveTransform 将模板图进行透视变以矫正图象得到标准图片Core.perspectiveTransform(templateCorners, templateTransformResult, homography);//矩形四个顶点var pointA = templateTransformResult.get(0, 0);var pointB = templateTransformResult.get(1, 0);var pointC = templateTransformResult.get(2, 0);var pointD = templateTransformResult.get(3, 0);var y0 = Math.round(pointA[1])>0?Math.round(pointA[1]):0;var y1 = Math.round(pointC[1])>0?Math.round(pointC[1]):0;var x0 = Math.round(pointD[0])>0?Math.round(pointD[0]):0;var x1 = Math.round(pointB[0])>0?Math.round(pointB[0]):0;console.timeEnd("匹配耗时");return {x: x0, y: y0};} else {console.timeEnd("匹配耗时");log("模板图不在原图中!");return null;}
}
http://www.lryc.cn/news/181728.html

相关文章:

  • [庆国庆 迎国庆 发文]云计算的概念
  • 计算机网络-计算机网络体系结构-概述,模型
  • 对示例程序spinner_asyncio.py进行修改使其能运行
  • Linux命令(93)之head
  • 使用Visual Studio调试排查Windows系统程序audiodg.exe频繁弹出报错
  • WebSocket实战之六心跳重连机制
  • Webpack 基础入门以及接入 CSS、Typescript、Babel
  • postgresql-自增字段
  • SpringBoot中使用Servlet和Filter
  • Monkey命令
  • 力扣 -- 279. 完全平方数(完全背包问题)
  • 在将对象 => JSON格式时,无法序列化部分属性
  • 用python表格初级尝试
  • 【单片机】16-LCD1602和12864显示器
  • AUTOSAR从入门到精通-基于 CAN 总线的汽车发电机智能调节器(下)
  • Windows下Tensorflow docker python开发环境搭建
  • idea常用快捷键 idea搜索快捷键
  • Redis Cluster Gossip Protocol: MEET
  • TcpConnection的读写操作【深度剖析】
  • k8s面试题
  • OpenCV 4.x 版本的新特性都有哪些?
  • Redisson—分布式集合
  • 93、Redis 之 使用连接池管理Redis6.0以上的连接 及 消息的订阅与发布
  • doris动态分区开启历史分区
  • Linux用户与权限(认知root用户、修改权限控制 - chmod、修改权限控制 - chown)
  • 处理conda安装工具的动态库问题——解决记录 libssl.1.0.0 系统中所有openssl位置全览 whereis openssl
  • 如何在Go中格式化字符串
  • C程序设计内容与例题讲解 -- 第四章--选择结构程序设计第二部分(第五版)谭浩强
  • 接雨水问题
  • 小谈设计模式(9)—工厂方法模式