当前位置: 首页 > news >正文

使用序列到序列深度学习方法自动睡眠阶段评分

深度学习方法,用于使用单通道脑电图进行自动睡眠阶段评分。

 

def build_firstPart_model(input_var,keep_prob_=0.5):# List to store the output of each CNNsoutput_conns = []######### CNNs with small filter size at the first layer ########## Convolutionnetwork = tf.layers.conv1d(inputs=input_var, filters=64, kernel_size=50, strides=6,padding='same', activation=tf.nn.relu)network = tf.layers.max_pooling1d(inputs=network, pool_size=8, strides=8, padding='same')# Dropoutnetwork = tf.nn.dropout(network, keep_prob_)# Convolutionnetwork = tf.layers.conv1d(inputs=network, filters=128, kernel_size=8, strides=1,padding='same', activation=tf.nn.relu)network = tf.layers.conv1d(inputs=network, filters=128, kernel_size=8, strides=1,padding='same', activation=tf.nn.relu)network = tf.layers.conv1d(inputs=network, filters=128, kernel_size=8, strides=1,padding='same', activation=tf.nn.relu)# Max poolingnetwork = tf.layers.max_pooling1d(inputs=network, pool_size=4, strides=4, padding='same')# Flattennetwork = flatten(name="flat1", input_var=network)output_conns.append(network)######### CNNs with large filter size at the first layer ########## Convolutionnetwork = tf.layers.conv1d(inputs=input_var, filters=64, kernel_size=400, strides=50,padding='same', activation=tf.nn.relu)network = tf.layers.max_pooling1d(inputs=network, pool_size=4, strides=4, padding='same')# Dropoutnetwork = tf.nn.dropout(network, keep_prob_)# Convolutionnetwork = tf.layers.conv1d(inputs=network, filters=128, kernel_size=6, strides=1,padding='same', activation=tf.nn.relu)network = tf.layers.conv1d(inputs=network, filters=128, kernel_size=6, strides=1,padding='same', activation=tf.nn.relu)network = tf.layers.conv1d(inputs=network, filters=128, kernel_size=6, strides=1,padding='same', activation=tf.nn.relu)# Max poolingnetwork = tf.layers.max_pooling1d(inputs=network, pool_size=2, strides=2, padding='same')# Flattennetwork = flatten(name="flat2", input_var=network)output_conns.append(network)# Concatnetwork = tf.concat(output_conns,1, name="concat1")# Dropoutnetwork = tf.nn.dropout(network, keep_prob_)return network

http://www.lryc.cn/news/181320.html

相关文章:

  • 【算法】排序——选择排序和交换排序(快速排序)
  • Docker 容器监控 - Weave Scope
  • Spring Boot集成redis集群拓扑动态刷新
  • COCI2022-2023#1 Neboderi
  • 由于找不到d3dx9_43.dll无法继续执行此代码怎么解决?全面解析d3dx9_43.dll
  • Linux--网络编程-字节序
  • python实现http/https拦截
  • 农产品团购配送商城小程序的作用是什么
  • 使用van-dialog二次封装微信小程序模态框
  • 生鲜蔬果同城配送社区团购小程序商城的作用是什么
  • Unity实现设计模式——状态模式
  • 差分数组的应用技巧
  • 斯坦福数据挖掘教程·第三版》读书笔记(英文版)Chapter 10 Mining Social-Network Graphs
  • DFS:842. 排列数字
  • pytorch之nn.Conv1d详解
  • H5生成二维码
  • Three.js加载360全景图片/视频
  • 北大硕士7年嵌入式学习经验分享
  • 华为鸿蒙手表开发之动态生成二维码
  • 2023-09-28 monetdb-databae的概念和作用-分析
  • 2024级199管理类联考之数学基础(上篇)
  • RFID技术引领汽车零部件加工新时代
  • python中使用matplotlib绘图
  • Qt Creator 使用技巧
  • 来看看双阶段目标检测算法趴
  • python利用matplotlib绘图,对于中文和负号不显示,显示方框“口口”完美解决办法!!
  • 【数组及指针经典笔试题解析】
  • Transformer学习-self-attention
  • Spring Boot:利用JPA进行数据库的增改
  • 列表的增删改查和遍历