当前位置: 首页 > news >正文

Machine Learning(study notes)

There is no studying without going crazy

Studying alwats drives us crazy

文章目录

  • Define
    • Machine Learning
    • Supervised Learning(监督学习)
      • Regression problem
      • Classidication
    • Unspervised Learning
      • Clustering
  • Study
    • Model representation(模型概述)
      • const function
      • How to use and t
      • solve problem
    • gradient descent

Define

Machine Learning

A computer program is said to learn from experience E with respect to some task T and some performance measure P , if its performance on T, as measued

计算机程序从经验E中学习,解决某一任务T进行某一性能度量P,通过P测定在T上的表现因经验E而提高
realy rhyme

Supervised Learning(监督学习)

right answers given

Regression problem

tring to predict continuios valued ouput

需要预测连续的数值输出

in that problem , you should give its some right valued with different classic and machine learning will learn to predict it

在这里插入图片描述

Classidication

discrete valued output (zero or one)

离散取值输出

in that problem, you should give some valued . Different with regression , maybe the type of data
在这里插入图片描述

Unspervised Learning

Clustering

maybe using clustring algorithm to break that data into two separate clusters

使用聚类算法将数据分为两簇

do not know what data mean and data features and so on(just about data information),and you know ,machine learning should classification those data into different clusters

the classic problem of that maybe Cocktail party problem algorithm

经典问题就是鸡尾酒派对算法,就是有背景音乐以及人声,能分理分离出两者的声音

Study

Model representation(模型概述)

using this example
在这里插入图片描述

And we will give some training set
在这里插入图片描述
As you can see , we put
m as number of training examples,
x’s as “input” variable / features ,
y’s as “output” variable / “target” variable ,
(x,y) as one training example ,
(x(i),y(i)) refer to the ith training example.(this superscript i over here , this is not exponentiation.The superscript i in parenthess that’s just an index into my training set)

在这里插入图片描述
We saw that with the training set like our training set of housing prices and we feed that to our learning algorithm.Is the job of a learning algorithm to then output a function which by convention is usually denoted lowercase h

const function

在这里插入图片描述
In this chart , we want the difference between h(x) and y to be small .And one thing I’m gonna do is try to minimize the square difference between the output of the hypothesis and the actual price of the house.

在这里插入图片描述
What we want to do is minimize over theta zero and theta one my function J of theta zero comma theta one

error cost function is probably the most commonly used one for regeression problem

How to use and t

solve problem

gradient descent

It turns out gradient descent is a more general algorithm, and is used not only in linear regression. It’s actually used all over the place in machine learning.

在这里插入图片描述
Here is the problem setup.
We are going to see that we have some function J of (θ01). Maybe it is a cost function from linear regression.And we want to come up with an algorithm for minimizing that as a function of J of (θ01).

For the sake of brevity , for the sake of your succinctness of notation , so we just goingn to pretend that have only two parameters through the rest of this video.


The idea for gradient descent :

What we’re going to do is we are going to strat off with some initial guesses for θ0 and θ1.
What we are going to do in gradient descent is we’ll keep changing θ0 and θ1 a little bit to try to reduce J of (θ01)

http://www.lryc.cn/news/179025.html

相关文章:

  • centos7通过docker搭建nginx+php环境
  • Node.js 学习笔记
  • RabbitMQ之发布确认高级
  • lv5 嵌入式开发-10 信号机制(下)
  • 【postgresql】 ERROR: multiple assignments to same column “XXX“
  • 一文读懂Llama 2(从原理到实战)
  • 完整指南:如何使用 Node.js 复制文件
  • ElementUI - 主页面--动态树右侧内容管理
  • 全国排名前三的直播公司无锋科技入驻天府蜂巢成都直播产业基地
  • 机器人中的数值优化|【五】BFGS算法非凸/非光滑处理
  • ESP32S3的MPU-6050组件移植教程
  • excel筛选后求和
  • pyspark 检测任务输出目录是否空,避免读取报错
  • 「网页开发|前端开发|Vue」10 vuex模块化:将数据划分成不同modules分别管理
  • 苹果CMS插件-苹果CMS全套插件免费
  • 域环境介绍
  • 地球同步静止轨道上的中国卫星
  • HAProxy代理TCP(使用HAProxy 为TiDB-Server 做负载均衡)
  • 全新自适应导航网模板 导航网系统源码 网址导航系统源码 网址目录网系统源码
  • 无人直播间
  • Linux 服务器防止 ssh 暴力密码登录破解之使用 fail2ban
  • 第十四届蓝桥杯大赛软件赛决赛 C/C++ 大学 B 组 试题 D: 合并数列
  • ChatGPT必应联网功能正式上线
  • DETR中的问题汇总(代码)
  • 华为云云耀云服务器L实例评测|使用华为云耀云服务器L实例的CentOS部署Docker并运行Tomcat应用
  • Java基础---第八篇
  • (附源码)springboot体检预约APP 计算机毕设16370
  • Spring的注解开发-@Component的三个衍生注解
  • 无线WIFI工业路由器可用于楼宇自动化
  • 基于长短期神经网络铜期货价格预测,基于LSTM的铜期货价格预测,LSTM的详细原理