当前位置: 首页 > news >正文

CodeTON Round 6 (Div 1 + Div 2, Rated, Prizes!)(A - E)

CodeTON Round 6 (Div. 1 + Div. 2, Rated, Prizes!)(A - E)

CodeTON Round 6 (Div. 1 + Div. 2, Rated, Prizes!)

A. MEXanized Array(分类讨论)

可以发现当 n < k 或者 k > x + 1 的时候无法构成 , 其余的时候贪心的用 x 最大化贡献即可 , 注意特判 k == x 的情况。

#include<bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define IOS std::ios::sync_with_stdio(false),cin.tie(0),cout.tie(0);
#define int long long
const int N = 2e6 + 10;
const int mod = 1e9 + 7;
typedef pair<int,int>PII;int t , n , k , x; signed main(){IOScin >> t;while(t --) {cin >> n >> k >> x;if(n < k || k > x + 1) {cout << "-1\n";} else {int res = 0;int now = k - 1;res += (now + 1) * now / 2;if(k == x) res += (x - 1) * (n - k);else res += x * (n - k);cout << res << "\n";}}return 0;
}
//freopen("文件名.in","r",stdin);
//freopen("文件名.out","w",stdout);

B. Friendly Arrays(位运算)

观察或运算发现 , 只有当前位为 1 的时候或运算才能对结果产生影响 , 且是把所有数当前位全部变成 1 , 不妨对 n 的奇偶进行讨论 ,模拟完可以发现这样的一个性质 , 当 n 为奇数的时候操作异或和会变大 , 偶数的时候操作异或和会变小 , 所以最大最小值一定是全操作和全不操作的 , 计算即可。

#include<bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define IOS std::ios::sync_with_stdio(false),cin.tie(0),cout.tie(0);
#define int long long
const int N = 2e6 + 10;
const int mod = 1e9 + 7;
typedef pair<int,int>PII;int n , m , t;
int a[N] , b[N];signed main(){IOScin >> t;while(t --) {cin >> n >> m;int mx = 0 , mn = 0 , k = 0;for(int i = 1 ; i <= n ; i ++) cin >> a[i];for(int i = 1 ; i <= m ; i ++) cin >> b[i] , k |= b[i];for(int i = 1 ; i <= n ; i ++) {mn ^= (a[i] | k);mx ^= a[i];}if(mn > mx) swap(mn , mx);cout << mn << " " << mx << "\n";}return 0;
}
//freopen("文件名.in","r",stdin);
//freopen("文件名.out","w",stdout);

C. Colorful Table(思维 ,排序)

不难发现对于每个数来说 , 我们要找大于等于本身的最靠左的位置和最靠右的位置 , 考虑按照值的大小升序排序 , 这样问题就转化成找排序后每个值右边序号的最大值和最小值 , 逆序扫一遍 , 边扫便维护即可。

#include<bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define IOS std::ios::sync_with_stdio(false),cin.tie(0),cout.tie(0);
#define int long long
const int N = 2e6 + 10;
const int mod = 1e9 + 7;
typedef pair<int,int>PII;int t , n , k , ans[N];
struct node {int x , id;
}a[N];signed main(){IOScin >> t;while(t --) {cin >> n >> k;for(int i = 1 ; i <= n ; i ++) {cin >> a[i].x ;a[i].id = i;}sort(a + 1 , a + 1 + n ,[&](node a, node b){return a.x < b.x;});int mx = -9e18 , mn = 9e18;for(int i = n ; i >= 1 ; i --){int now = a[i].x;int id  = a[i].id;mx = max(mx , id);mn = min(mn , id);ans[now] = (mx - mn + 1) * 2;}for(int i = 1 ; i <= k ; i ++) {cout << ans[i] << " ";ans[i] = 0;}cout << "\n";}return 0;
}
//freopen("文件名.in","r",stdin);
//freopen("文件名.out","w",stdout);

D. Prefix Purchase(贪心)

首先不难想到,贪心的取次数最多且最靠右的位置 , 但这样显然不是最优的 , 因为有

3 4 5

11

这种情况 , 我们可以通过替换的方式更充分的利用余数 ,转化一下不难发现如何利用余数的问题和开始要求的问题是一样的(选 4 还是选 5去替换 3 就相当于 k = 2 时 , 选 1 还是 选 2 能让字典序变大) , 不断贪心的选把余数用完即可.

例如 :

3 4 5

11

第一次贪心之后会变成

0 1 2

2

第二次贪心之后会变成

0 0 1

0

#include<bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define IOS std::ios::sync_with_stdio(false),cin.tie(0),cout.tie(0);
#define int long long
const int N = 2e6 + 10;
const int mod = 1e9 + 7;
typedef pair<int,int>PII;int t , n , k;
int a[N] , pre[N] , b[N];signed main(){IOScin >> t;while(t --) {cin >> n;pre[0] = 0;for(int i = 1 ; i <= n ; i ++) cin >> a[i] , pre[i] = 0;cin >> k;int id = 0;while(k && id != -1) {int maxx = 0 , id1 = -1;for(int i = n ; i >= id + 1 ; i --) {if((k / a[i]) > maxx) {maxx = k / a[i];id1  = i;} }k -= maxx * a[id1];for(int i = n ; i >= id1 + 1 ; i --) {a[i] -= a[id1];}pre[id]    += maxx;pre[id1]   -= maxx;id = id1;}int sum = 0;for(int i = 1 ; i <= n ; i ++) {sum += pre[i - 1];cout << sum << " ";}cout << "\n";}return 0;
}
//freopen("文件名.in","r",stdin);
//freopen("文件名.out","w",stdout);

E. Another MEX Problem(dp)

先考虑 O(n^3) 的解决方法

d p [ i ] [ j ] 表示前 i 个数是否能表示出 j dp[i][j] 表示前 i 个数是否能表示出 j dp[i][j]表示前i个数是否能表示出j

考虑转移

若当前位不选进区间 dp[i][j] = dp[i - 1][j];

若当前位选进区间 , 枚举以当前位为右边界的区间 , 进行转移

dp[i][j] |= dp[l - 1][j ^ mex[l][i]]

#include<bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define IOS std::ios::sync_with_stdio(false),cin.tie(0),cout.tie(0);
#define int long long
const int N = 5e3 + 10;
const int mod = 1e9 + 7;
typedef pair<int,int>PII;int t , n ;signed main(){IOScin >> t;while(t --) {cin >> n;		vector<int>a(n + 1);for(int i = 1 ; i <= n ; i ++) {cin >> a[i];}vector<vector<int>>mex(n + 1 , vector<int>(n + 1));vector<vector<bool>>dp(n + 1 , vector<bool>(1 << 13));for(int i = 1 ; i <= n ; i ++) {int now = 0;vector<bool>vis(n + 1);for(int j = i ; j <= n ; j ++) {vis[a[j]] = 1;while(vis[now]) now += 1;mex[i][j] = now;	}}dp[0][0] = 1;for(int i = 1 ; i <= n ; i ++) {//从上一位自然转移dp[i] = dp[i - 1];	for(int l = 1 ; l <= i ; l ++) {for(int k = 0 ; k < (1 << 13) ; k ++) {if(dp[l - 1][k]) dp[i][k ^ mex[l][i]] = 1;}}}int res = 0;for(int i = 0 ; i < (1 << 13) ; i ++) {if(dp[n][i]) res = max(res , i);}cout << res << "\n";}return 0;
}
//freopen("文件名.in","r",stdin);
//freopen("文件名.out","w",stdout);

考虑优化:

1:首先对于相同的右边界 , 我们枚举左边界的时候从大到小 , 由于我们是先从大的范围开始枚举 , 所以每个 mex 只更新一次即可。

2.其次对于相同的左边界 , 每个 mex 更新一次即可 。

显然能凑出来的mex的数量级是O(n)的 , 更新次数也是O(n)的

总复杂度

O ( n 2 ) O(n^2) O(n2)

#include<bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define IOS std::ios::sync_with_stdio(false),cin.tie(0),cout.tie(0);
#define int long long
const int N = 5e3 + 10;
const int mod = 1e9 + 7;
typedef pair<int,int>PII;int t , n ;signed main(){IOScin >> t;while(t --) {cin >> n;vector<int>a(n + 1);for(int i = 1 ; i <= n ; i ++) {cin >> a[i];}vector<vector<int>>mex(n + 1 , vector<int>(n + 1));vector<vector<bool>>dp(n + 1 , vector<bool>(1 << 13));for(int i = 1 ; i <= n ; i ++) {int now = 0;vector<bool>vis(n + 1);for(int j = i ; j <= n ; j ++) {vis[a[j]] = 1;while(vis[now]) now += 1;mex[i][j] = now;	}}dp[0][0] = 1;vector<vector<bool>>visl(n + 1 , vector<bool>(1 << 13));vector<vector<bool>>visr(n + 1 , vector<bool>(1 << 13));for(int i = 1 ; i <= n ; i ++) {//从上一位自然转移dp[i] = dp[i - 1];for(int l = i ; l >= 1 ; l --) {if(visr[i][mex[l][i]]) continue;if(visl[l][mex[l][i]]) continue;visl[l][mex[l][i]] = 1;visr[i][mex[l][i]] = 1;for(int k = 0 ; k < (1 << 13) ; k ++) {if(dp[l - 1][k]) dp[i][k ^ mex[l][i]] = 1;}}}int res = 0;for(int i = 0 ; i < (1 << 13) ; i ++) {if(dp[n][i]) res = max(res , i);}cout << res << "\n";}return 0;
}
//freopen("文件名.in","r",stdin);
//freopen("文件名.out","w",stdout);
http://www.lryc.cn/news/177833.html

相关文章:

  • Spring 源码分析(五)——Spring三级缓存的作用分别是什么?
  • Django基于类视图实现增删改查
  • matplotlib绘图实现中文宋体的两种方法(亲测)
  • 非常有用的JavaScript高阶面试技巧!
  • windows 安装Linux子系统 Ubuntu 并配置python3
  • pytorch的pixel_shuffle转tflite文件
  • sentinel-dashboard-1.8.0.jar开机自启动脚本
  • c++堆排序-建堆-插入-删除-排序
  • 使用代理后pip install 出现ssl错误
  • 护眼灯什么价位的好?最具性价比的护眼台灯推荐
  • vue event bus 事件总线
  • 深信服云桌面用户忘记密码后的处理
  • Cocos Creator3.8 实战问题(一)cocos creator prefab 无法显示内容
  • 朴素贝叶斯深度解码:从原理到深度学习应用
  • RUST 每日一省:闭包
  • Ubuntu下文件的解压缩操作:常用zip和unzip
  • Linux学习第22天:Linux中断驱动开发(一): 突如其来
  • IDEA 2019 Springboot 3.1.3 运行异常
  • 【JAVA】飞机大战
  • Midjourney 生成油画技巧
  • 26559-2021 机械式停车设备 分类
  • xxe攻击(XML外部实体)
  • 大数据-hadoop
  • 容器启动报错
  • 求生之路2服务器搭建插件安装及详细的游戏参数配置教程linux
  • IntelliJ IDEA 左侧Commit栏不见了
  • 使用自功率谱、互功率谱估计滤波器幅频特性
  • 51单片机光照强度检测自动路灯开关仿真( proteus仿真+程序+报告+讲解视频)
  • socat管理haproxy配置
  • Linux发行版X华为鲲鹏openEuler