当前位置: 首页 > news >正文

python 探索分形世界|曼德布洛特|np.frompyfunc()

文章目录

  • 分形的重要特征
  • 曼德布洛特集合
    • 曼德布洛特集合有一个以证明的结论:
    • 图像展示
      • np.ogrid[]
      • np.frompyfunc()
      • 集合转图像
  • julia集合

无边的奇迹源自简单规则的无限重复 ---- 分形之父Benoit B.Mandelbrot

分形的重要特征

  • 自相似性
  • 无标度性
  • 非线性
    在这里插入图片描述

曼德布洛特集合

  • z 0 = 0 z_0 = 0 z0=0
  • z n + 1 = z n 2 + c z_{n+1} = z_{n}^2 + c zn+1=zn2+c

想要确定复数c是否属于曼德布洛特集合,只要将c代入上面公式,当n足够大时,如果序列没有发散,则说明c输入曼德布洛特集合。

def iter_m(c):z = cfor i in range(1, 10):z = z**2 + cprint(round(z, 3), end = '->')print('\n' + '*' * 20)
iter_m(-1)
iter_m(-0.5)
iter_m(0.5)# 输出
0->-1->0->-1->0->-1->0->-1->0->
********************
-0.25->-0.438->-0.309->-0.405->-0.336->-0.387->-0.35->-0.377->-0.358->
********************
0.75->1.062->1.629->3.153->10.444->109.567->12005.476->144131442.662->2.0773872763941816e+16->
********************
可以看到-1和0.5不收敛

从图像理解-0.5为什么收敛:
z n + 1 = z n 2 + c z_{n+1} = z_{n}^2 + c zn+1=zn2+c知道 z 1 = − 0.5 z_1 = -0.5 z1=0.5 z 1 z_1 z1要作下一步的横坐标,因此由 y = x y =x y=x找到横坐标为 z 1 z_1 z1的点,然后再在曼德布洛特的迭代函数中计算。(win11的计算器绘图不是方格,我稍微查了一下也没找到解决办法,如果有人知道怎么改,希望能留言,感谢)可以看到收敛于交点,至于-1和0.5也可以用同样的方法从图中看出来。

请添加图片描述

曼德布洛特集合有一个以证明的结论:

复平面上的曼德布洛特集合在一个半径为2的圆内

# 改进后的函数
def iter_m3(c):z = cfor i in range(0, 200):if abs(z) > 2: # 迭代200次后还没有发散则说明很有可能就属于曼德布洛特集合return Falsez = z**2 + creturn True

图像展示

现提出想要对一个复数区域内的点进行区分是否属于曼德布洛特集合该如何做呢?
先学习两个方法

np.ogrid[]

x, y = np.ogrid[0:1:5j, -1:1:5j] # 前列后行
# 切片第三个参数如果以j结尾则是将其等分划分
# 如果没有j,只是一个数,则是以该数为间隔划分
print('x:\n', x)
print('y:\n', y)
z = x + y * 1j
print('z:\n', z)# 输出
x:[[0.  ][0.25][0.5 ][0.75][1.  ]]
y:[[-1.  -0.5  0.   0.5  1. ]]
z:[[0.  -1.j  0.  -0.5j 0.  +0.j  0.  +0.5j 0.  +1.j ][0.25-1.j  0.25-0.5j 0.25+0.j  0.25+0.5j 0.25+1.j ][0.5 -1.j  0.5 -0.5j 0.5 +0.j  0.5 +0.5j 0.5 +1.j ][0.75-1.j  0.75-0.5j 0.75+0.j  0.75+0.5j 0.75+1.j ][1.  -1.j  1.  -0.5j 1.  +0.j  1.  +0.5j 1.  +1.j ]]

np.frompyfunc()

优点类似于map的功能,但不完全相同。对于上面的iter_m3()方法只能传入一个复数,如果传入一个包含复数的数组则不可以。为了解决这个问题,使用np.frompyfunc(func, nin, nout)
其中func是自定义函数,nin是传入参数的个数,nout是传出参数的个数。

mande = np.frompyfunc(iter_m3, 1, 1)
mande(z)# 输出
array([[True, True, True, True, True],[False, True, True, True, False],[False, False, False, False, False],[False, False, False, False, False],[False, False, False, False, False]], dtype=object)

同样也可以使用map达到该功能,但是复杂一些

result = np.array(list(map(lambda row: list(map(iter_m3, row)), z)))
# 注意:对于二维数组,一层map取的是一维数组
print(result)# 输出
[[ True  True  True  True  True][False  True  True  True False][False False False False False][False False False False False][False False False False False]]

集合转图像

import numpy as np
import matplotlib.pylab as plt
from matplotlib import cmdef iter_m3(c):z = cfor i in range(0, 200):if abs(z) > 2: # 迭代200次后还没有发散则说明很有可能就属于曼德布洛特集合return Falsez = z**2 + creturn Truedef draw_set(cx, cy, d, ufunc:np.ufunc):x0, x1, y0, y1 = cx - d, cx + d, cy - d, cy + dy, x = np.ogrid[y0:y1:400j, x0:x1:400j]z = x + y * 1jplt.imshow(ufunc(z).astype(float), cmap=cm.jet, extent=[x0, x1, y0, y1])mande = np.frompyfunc(iter_m3, 1, 1)
draw_set(-0.5, 0, 1.5, mande)

输出图像:
在这里插入图片描述

但是颜色不够鲜艳,希望每一个不同的发散点都能显示不同的颜色。

def iter_m4(c):z = cfor i in range(0, 200):if abs(z) > 2: # 迭代200次后还没有发散则说明很有可能就属于曼德布洛特集合breakz = z**2 + creturn i
mande = np.frompyfunc(iter_m4, 1, 1)
draw_set(-0.5, 0, 1.5, mande)

放大
对(0.273, 0.5921)处进行放大

x, y = 0.273, 0.5921
plt.subplot(2, 3, 1)
draw_set(-0.5, 0, 1.5, mande)
for i in range(2, 7):plt.subplot(2, 3, i)draw_set(x, y, 0.25**(i-1.5), mande)

输出:
在这里插入图片描述

julia集合

迭代公式与曼德布洛特唯一区别在于 z 0 z_0 z0不是0,而是输入数据,c给定一个值,因此曼德布洛特集合只有一个,而julia集合有无数个。

def iter_j(z):c = -0.4 + 0.6jfor i in range(0, 200):if abs(z) > 2: # 迭代200次后还没有发散则说明很有可能就属于曼德布洛特集合breakz = z**2 + creturn i
julia = np.frompyfunc(iter_j, 1, 1)
draw_set(0, 0, 1.5, julia)

输出:
在这里插入图片描述
放大

x, y = 0.5754, 0.2048
plt.subplot(2, 3, 1)
draw_set(0, 0, 1.5, julia)
for i in range(2, 7):plt.subplot(2, 3, i)draw_set(x, y, 0.25**(i-1), julia)

输出:
在这里插入图片描述

http://www.lryc.cn/news/176260.html

相关文章:

  • Android MVVM示例项目
  • 迅为龙芯2K1000开发板通过汇编控制GPIO
  • 合合信息、上海大学、华南理工大学发布业内首个古彝文编码“大字典” ,为古文字打造“身份证”
  • Django — 类视图和中间件
  • VMware安装CentOS Stream 8以及JDK和Docker
  • MySQL作业1
  • 基于微信小程序的家校通系统设计与实现(亮点:选题新颖、上传作业、批改作业、成绩统计)
  • uni-app问题记录
  • Leetcode---363周赛
  • Netty粘包与拆包问题
  • JS下载链接的两种方式
  • 手把手教你实现:将后端SpringBoot项目部署到华为云服务器上
  • 【红队攻防】从零开始的木马免杀到上线
  • Linux命令行操作:使用“more“命令进行分页显示
  • CentOS下安装MySQL 8.1及备份配置
  • 【RabbitMQ实战】06 3分钟部署一个RabbitMQ集群
  • (c语言)整形提升
  • 上传文件报错:The temporary upload location [/tmp/tomcat/xxx] is not valid
  • 直线模组的品牌有哪些?
  • 零基础学习ESP8266
  • 基于PYQT5的GUI开发系列教程【二】框架安装和基础环境配置
  • pg数据库操作,insert(sql)插入一条数据后获返回当前插入数据的id --chatGPT
  • 【数据结构-树】哈夫曼树
  • HarmonyOS 4.0 实况窗上线!支付宝实现医疗场景智能提醒
  • 【响应式布局】
  • Spring面试题23:Spring支持哪些事务管理类型?Spring框架的事务管理有哪些优点?你更倾向用哪种事务管理类型?
  • Leetcode—— LCR 122. 路径加密
  • 缓冲区溢出漏洞分析
  • 【高阶数据结构】红黑树(C++实现)
  • 算力百川汇蓝海,商海荡漾绘宏图