当前位置: 首页 > news >正文

二叉树的存储

目录

1.使用孩子表示法创建二叉树

2.二叉树的遍历

2.1前中后序遍历

2.2 前中后序遍历的选择题

2.3实现前中后序遍历

2.3.1前序遍历

2.3.2中序遍历

2.3.3后序遍历

3.二叉树的基本操作

3.1获取叶子节点的个数

3.2获取树中节点的个数

3.3获取第K层节点的个数

3.4获取二叉树的高度

3.5检测值为value的元素是否存在


1.使用孩子表示法创建二叉树

二叉树的存储结构 分为: 顺序存储 类似于链表的链式存储

这篇文章主讲的是链式存储。

二叉树的链式存储是通过一个一个的节点引用起来的,常见的表示方式有二叉和三叉表示方式。

二叉表示:

// 孩子表示法
class Node {
int val ; // 数据域
Node left ; // 左孩子的引用,常常代表左孩子为根的整棵左子树
Node right ; // 右孩子的引用,常常代表右孩子为根的整棵右子树
}

三叉表示:

// 孩子双亲表示法
class Node {
int val ; // 数据域
Node left ; // 左孩子的引用,常常代表左孩子为根的整棵左子树
Node right ; // 右孩子的引用,常常代表右孩子为根的整棵右子树
Node parent ; // 当前节点的根节点
}

这篇文章使用的存储储存方式是孩子表示法

在学习二叉树的基本操作前,需先要手动快速创建一棵简单的二叉树,使用孩子表示法。创建如下(图1)二叉树。

public class Tree {class TreeNode{char val;TreeNode left;TreeNode right;public TreeNode(char val){this.val=val;}}public TreeNode create(){TreeNode A=new TreeNode('A');TreeNode B=new TreeNode('B');TreeNode C=new TreeNode('C');TreeNode D=new TreeNode('D');TreeNode E=new TreeNode('E');TreeNode F=new TreeNode('F');TreeNode G=new TreeNode('G');TreeNode H=new TreeNode('H');A.left=B;A.right=C;B.left=D;B.right=E;C.left=F;C.right=G;E.right=H;return A;}
}


2.二叉树的遍历

依次对树中每个结 点均做一次且仅做一次访问

2.1前中后序遍历

为什么要有前中后序遍历顺序?

  在遍历二叉树时,如果没有进行某种约定,每个人都按照自己的方式遍历,得出的结果就比较混乱, 如果按 照某种规则进行约定,则每个人对于同一棵树的遍历结果肯定是相同的
如果 N代表根节点 L代表根节点的 左子树 R代表根节点的右子树 ,则根据遍历根节点的先后次序有以下遍历方式
NLR :前序遍历 (Preorder Traversal 亦称先序遍历 )—— 访问根结点 ---> 根的左子树 ---> 根的右子树。
LNR :中序遍历 (Inorder Traversal)—— 根的左子树 ---> 根节点 ---> 根的右子树。
LRN :后序遍历 (Postorder Traversal)—— 根的左子树 ---> 根的右子树 ---> 根节点。

 以图一为例:

前序遍历结果:A B D E H C F G
中序遍历结果:D B E H A F C G
后序遍历结果:D H E B F G C A

2.2 前中后序遍历的选择题

(1)某完全二叉树按层次输出(同一层从左到右)的序列为 ABCDEFGH 。该完全二叉树的前序序列为()

A: ABDHECFG
B: ABCDEFGH
C: HDBEAFCG
D: HDEBFGCA
二叉树如图:

故选A

(2) 二叉树的先序遍历和中序遍历如下:先序遍历:EFHIGJK;中序遍历:HFIEJKG.则二叉树根结点为()

A: E              B: F               C: G            D: H
二叉树如图:
故选A
(3) 设一课二叉树的中序遍历序列: badce ,后序遍历序列: bdeca ,则二叉树前序遍历序列为 ()
A: adbce             B: decab              C: debac             D: abcde
二叉树如图:
故选D
(4)某二叉树的后序遍历序列与中序遍历序列相同,均为 ABCDEF ,则按层次输出 ( 同一层从左到右 ) 的序列为 ()
A: FEDCBA
B: CBAFED
C: DEFCBA
D: ABCDEF
二叉树如图:
故选A
思考题:

2.3实现前中后序遍历

2.3.1前序遍历
    // 前序遍历void preOrder(TreeNode root){if(root==null){return;}System.out.println(root.val+" ");preOrder(root.left);preOrder(root.right);}
2.3.2中序遍历
// 中序遍历void inOrder(TreeNode root){if(root==null){return;}preOrder(root.left);System.out.println(root.val+" ");preOrder(root.right);}
2.3.3后序遍历
// 后序遍历void postOrder(TreeNode root){if(root==null){return;}preOrder(root.left);preOrder(root.right);System.out.println(root.val+" ");}

3.二叉树的基本操作

// 获取树中节点的个数
int size ( Node root );
// 获取叶子节点的个数
int getLeafNodeCount ( Node root );
// 获取第 K 层节点的个数
int getKLevelNodeCount ( Node root , int k );
// 获取二叉树的高度
int getHeight ( Node root );
// 检测值为 value 的元素是否存在
Node fifind ( Node root , int val ); 

3.1获取叶子节点的个数

当前节点的左右子树若都为空,说明该节点为叶子结点,返回1

树的叶子节点的个数=左树叶子节点的个数+右树叶子节点的个数

    int getLeafNodeCount(TreeNode root){if(root==null){return 0;}return getLeafNodeCount(root.left)+getLeafNodeCount(root.right);}

3.2获取树中节点的个数

若当前结点为空,返回0

先获取左节点个数,再获取右节点个数,然后返回两者相加再加上根节点的个数1

  int size(TreeNode root){if(root==null){return 0;}return size(root.right)+size(root.left)+1;}

3.3获取第K层节点的个数

本质是计算k=1时的节点数

树的叶子第K层节点的个数=左树叶子第K-1层节点的个数+右树第K-1层节点的个数

    int getKLevelNodeCount(TreeNode root, int k) {if(root==null){return 0;}if(k==1){return 1;}return getKLevelNodeCount(root.left,k-1)+getKLevelNodeCount(root.right,k-1);}

3.4获取二叉树的高度

    int getHeight(TreeNode root) {if(root==null){return 0;}int lefthight=getHeight(root.left);int rifhthight=getHeight(root.right);return lefthight>rifhthight?(lefthight+1):(rifhthight+1);}

3.5检测值为value的元素是否存在

遍历左(右)子树,若没有找到,则返回null,若找到,则返回该结点

   TreeNode fifind(TreeNode root, int val) {if (root==null){return null;}if(root.val==val){return root;}TreeNode lefttree=fifind(root.left, val);if(lefttree!=null){return lefttree;}TreeNode righttree=fifind(root.right, val);if(righttree!=null){return righttree;}return null;}

以上为我个人的小分享,如有问题,欢迎讨论!!! 

都看到这了,不如关注一下,给个免费的赞 

 

http://www.lryc.cn/news/175972.html

相关文章:

  • List 去重的几种方法
  • UNet网络制作
  • 智能热水器丨打造智能家居新体验
  • Python 十进制转化二进制1.0(简易版)
  • WebGL 选中一个表面
  • open ai chartgpt 安装插件 txyz.ai
  • 【算法思想】贪心
  • freeswitch-01
  • Zookeeper-集群介绍与核心理论
  • 动态分配的内存位置在哪里?
  • Vue3中的Ref与Reactive:深入理解响应式编程
  • Windows10/11显示文件扩展名 修改文件后缀名教程
  • 【C++】手撕string(string的模拟实现)
  • 用python3编译cv_bridge
  • 招商信诺人寿基于 Apache Doris 统一 OLAP 技术栈实践
  • 我的python安装在哪儿了?python安装路径怎么查?
  • 视频汇聚/安防监控平台EasyCVR指定到新的硬盘进行存储录像,如何自动挂载该磁盘?
  • 读博时的建议或心得
  • 3分钟,免费制作一个炫酷实用的数据可视化大屏!
  • 自费访学|金融公司高管赴世界名校伯克利交流
  • Databend 开源周报第112期
  • 如何学习maya mel语言的经验分享
  • 睿趣科技:新手抖音开店卖什么产品好
  • 【新版】系统架构设计师 - 案例分析 - 架构设计<Web架构>
  • 竞赛选题 基于视觉的身份证识别系统
  • git详细教程
  • [old]TeamDev DotNetBrowser Crack
  • Zynq-Linux移植学习笔记之63- linux内核崩溃的重启
  • 【精华】ubuntu编译openpose
  • 第二届全国高校计算机技能竞赛——Java赛道