Python机器学习实战-特征重要性分析方法(3):迭代删除法:Leave-one-out(附源码和实现效果)
实现功能
迭代地每次删除一个特征并评估准确性
实现代码
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score
import matplotlib.pyplot as plt
import numpy as np# Load sample data
X, y = load_breast_cancer(return_X_y=True)# Split data into train and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=1)# Train a random forest model
rf = RandomForestClassifier(n_estimators=100, random_state=1)
rf.fit(X_train, y_train)# Get baseline accuracy on test data
base_acc = accuracy_score(y_test, rf.predict(X_test))# Initialize empty list to store importances
importances = []# Iterate over all columns and remove one at a time
for i in range(X_train.shape[1]):X_temp = np.delete(X_train, i, axis=1)rf.fit(X_temp, y_train)acc = accuracy_score(y_test, rf.predict(np.delete(X_test, i, axis=1)))importances.append(base_acc - acc)# Plot importance scores
plt.style.use('ggplot')
plt.figure(figsize=(10, 8))
plt.bar(range(len(importances)), importances)
plt.xlabel('Feature Index')
plt.ylabel('Feature Importance')
plt.show()
实现效果
本人读研期间发表5篇SCI数据挖掘相关论文,现在某研究院从事数据挖掘相关科研工作,对数据挖掘有一定认知和理解,会结合自身科研实践经历不定期分享关于python机器学习、深度学习、数据挖掘基础知识与案例。
致力于只做原创,以最简单的方式理解和学习,关注我一起交流成长。
邀请三个朋友关注V订阅号:数据杂坛,即可在后台联系我获取相关数据集和源码,送有关数据分析、数据挖掘、机器学习、深度学习相关的电子书籍。