当前位置: 首页 > news >正文

C# Onnx Yolov8 Detect 水果识别

效果

项目

 代码

using Microsoft.ML.OnnxRuntime;
using Microsoft.ML.OnnxRuntime.Tensors;
using OpenCvSharp;
using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using static System.Net.Mime.MediaTypeNames;namespace Onnx_Yolov8_Demo
{public partial class Form1 : Form{public Form1(){InitializeComponent();}string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";string image_path = "";string startupPath;string classer_path;DateTime dt1 = DateTime.Now;DateTime dt2 = DateTime.Now;string model_path;Mat image;DetectionResult result_pro;Mat result_image;SessionOptions options;InferenceSession onnx_session;Tensor<float> input_tensor;List<NamedOnnxValue> input_ontainer;IDisposableReadOnlyCollection<DisposableNamedOnnxValue> result_infer;DisposableNamedOnnxValue[] results_onnxvalue;Tensor<float> result_tensors;float[] result_array = new float[8400 * 19];float[] factors = new float[2];Result result;StringBuilder sb = new StringBuilder();private void button1_Click(object sender, EventArgs e){OpenFileDialog ofd = new OpenFileDialog();ofd.Filter = fileFilter;if (ofd.ShowDialog() != DialogResult.OK) return;pictureBox1.Image = null;image_path = ofd.FileName;pictureBox1.Image = new Bitmap(image_path);textBox1.Text = "";image = new Mat(image_path);pictureBox2.Image = null;}private void button2_Click(object sender, EventArgs e){if (image_path == ""){return;}// 配置图片数据image = new Mat(image_path);int max_image_length = image.Cols > image.Rows ? image.Cols : image.Rows;Mat max_image = Mat.Zeros(new OpenCvSharp.Size(max_image_length, max_image_length), MatType.CV_8UC3);Rect roi = new Rect(0, 0, image.Cols, image.Rows);image.CopyTo(new Mat(max_image, roi));factors[0] = factors[1] = (float)(max_image_length / 640.0);// 将图片转为RGB通道Mat image_rgb = new Mat();Cv2.CvtColor(max_image, image_rgb, ColorConversionCodes.BGR2RGB);Mat resize_image = new Mat();Cv2.Resize(image_rgb, resize_image, new OpenCvSharp.Size(640, 640));// 输入Tensor// input_tensor = new DenseTensor<float>(new[] { 1, 3, 640, 640 });for (int y = 0; y < resize_image.Height; y++){for (int x = 0; x < resize_image.Width; x++){input_tensor[0, 0, y, x] = resize_image.At<Vec3b>(y, x)[0] / 255f;input_tensor[0, 1, y, x] = resize_image.At<Vec3b>(y, x)[1] / 255f;input_tensor[0, 2, y, x] = resize_image.At<Vec3b>(y, x)[2] / 255f;}}//将 input_tensor 放入一个输入参数的容器,并指定名称input_ontainer.Add(NamedOnnxValue.CreateFromTensor("images", input_tensor));dt1 = DateTime.Now;//运行 Inference 并获取结果result_infer = onnx_session.Run(input_ontainer);dt2 = DateTime.Now;// 将输出结果转为DisposableNamedOnnxValue数组results_onnxvalue = result_infer.ToArray();// 读取第一个节点输出并转为Tensor数据result_tensors = results_onnxvalue[0].AsTensor<float>();result_array = result_tensors.ToArray();resize_image.Dispose();image_rgb.Dispose();result_pro = new DetectionResult(classer_path, factors);result = result_pro.process_result(result_array);result_image = result_pro.draw_result(result, image.Clone());if (!result_image.Empty()){pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());sb.Clear();sb.AppendLine("推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms");sb.AppendLine("------------------------------");for (int i = 0; i < result.length; i++){sb.AppendLine(string.Format("{0}:{1},({2},{3},{4},{5})", result.classes[i], result.scores[i].ToString("0.00"), result.rects[i].TopLeft.X, result.rects[i].TopLeft.Y, result.rects[i].BottomRight.X, result.rects[i].BottomRight.Y));}textBox1.Text = sb.ToString();}else{textBox1.Text = "无信息";}}private void Form1_Load(object sender, EventArgs e){startupPath = System.Windows.Forms.Application.StartupPath;model_path = startupPath + "\\fruits.onnx";classer_path = startupPath + "\\lable.txt";// 创建输出会话,用于输出模型读取信息options = new SessionOptions();options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;// 设置为CPU上运行options.AppendExecutionProvider_CPU(0);// 创建推理模型类,读取本地模型文件onnx_session = new InferenceSession(model_path, options);//model_path 为onnx模型文件的路径// 输入Tensorinput_tensor = new DenseTensor<float>(new[] { 1, 3, 640, 640 });// 创建输入容器input_ontainer = new List<NamedOnnxValue>();}}
}

lable.txt

cucumber
apple
kiwi
banana
orange
coconut
peach
cherry
pear
pomegranate
pineapple
watermelon
melon
grape
strawberry

数据集

数据集下载 

Demo下载 

http://www.lryc.cn/news/174539.html

相关文章:

  • 测试网页调用本地可执行程序(续1:解析参数中的中文编码)
  • C++入门知识
  • spring和springmvc常用注解
  • 【Java】Java生成PDF工具类
  • STL map,插入和查找的一些注意事项
  • 基于springboot+vue的客户关系管理系统(前后端分离)
  • 【Java 基础篇】Java Stream 流详解
  • 题解:ABC321A - 321-like Checker
  • Zig实现Hello World
  • Vue3+element-plus切换标签页时数据保留问题
  • 前端教程-TypeScript
  • 代码随想录算法训练营 动态规划part06
  • 能跑通的mmdet3d版本
  • SD-MTSP:萤火虫算法(FA)求解单仓库多旅行商问题MATLAB(可更改数据集,旅行商的数量和起点)
  • bootstrapv4轮播图去除两侧阴影及线框的方法
  • python 自建kafka消息生成和消费小工具
  • Prim算法:经过图中所有节点的最短路径
  • Linux 信号捕捉函数 signal sigaction
  • StarRocks操作笔记
  • Linux的ls -ld命令产生的信息怎么看
  • Linux- 内存映射文件(Memory-Mapped File)
  • 李航老师《统计学习方法》第五章阅读笔记
  • iOS16新特性:实时活动-在锁屏界面实时更新APP消息 | 京东云技术团队
  • 使用 Elasticsearch、OpenAI 和 LangChain 进行语义搜索
  • NIFI集群_队列Queue中数据无法清空_清除队列数据报错_无法删除queue_解决_集群中机器交替重启删除---大数据之Nifi工作笔记0061
  • leetcode20. 有效的括号 [简单题]
  • ubuntu20.04下源码编译colmap
  • Jumpserver堡垒机
  • 第一百五十三回 如何实现滑动窗口
  • Oracle 12c自动化管理特性的新进展:自动备份、自动恢复和自动维护功能的优势|oracle 12c相对oralce 11g的新特性(3)