当前位置: 首页 > news >正文

基于PLE结合卡尔曼滤波的RSSI定位算法matlab仿真

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

5.算法完整程序工程


1.算法运行效果图预览

2.算法运行软件版本

MATLAB2022a

3.部分核心程序

...............................................................
for Num_xb = Num_xb2Num_xbIndx = Indx + 1;Dis        = RoomLength/(Num_xb-1); for m=1:Stimesmrng(m);%生成节点坐标Position_X = (0.7*rand)*RoomLength;Position_Y = (0.7*rand)*RoomWidth;Position   = [Position_X,Position_Y];%计算节点到信标的距离for i=1:Num_xbXB(:,i)   = [i;(i-1)*Dis;0];Dist(:,i) = sqrt((Position_X-((i-1)*Dis))^2+Position_Y^2);end%基于RSS的定位算法  for i=1:Num_xbNumber_rssi(1,i) = i;%每个信标节点的RSSI值if Dist(i) > Good_radius  Number_rssi(2,i) = 0;elseNumber_rssi(2,i) = func_RSSI_cal(Dist(i),Alpha);endendNumber_rssi2 = Number_rssi;Number_rssi_save{m} = Number_rssi;Position_X2{m}      = Position_X;Position_Y2{m}      = Position_Y;%进行卡尔曼滤波%进行卡尔曼滤波%进行卡尔曼滤波tmps            = Number_rssi_save{m}(2,:);kalman_dat2{m}  = func_kalman(tmps); Number_rssi(1,:)= Number_rssi_save{m}(1,:);Number_rssi(2,:)= kalman_dat2{m};Position_X  = Position_X2{m};Position_Y  = Position_Y2{m};%将RSSI值从大到小排列  for i = 1:Num_xbfor j = i:Num_xbif Number_rssi(2,i) < Number_rssi(2,j)a = Number_rssi(1,j);b = Number_rssi(2,j);Number_rssi(2,j) = Number_rssi(2,i);Number_rssi(1,j) = Number_rssi(1,i);Number_rssi(1,i) = a;Number_rssi(2,i) = b;endendend%RSSI值最大的信标的距离for i=1:Best_xbDist(i) = Dis*( (func_RSSI_cal(Dis,Alpha)/Number_rssi(2,i))^(1/2.8) );end%求未知节点坐标for i=1:Best_xbBeaconn(1,i) = XB(2,Number_rssi(1,i));Beaconn(2,i) = XB(3,Number_rssi(1,i));endAll_num=Best_xb; for i=1:2for j=1:(All_num-1)a(i,j) = Beaconn(i,j)-Beaconn(i,All_num);endendA =-2*(a');for i=1:(All_num-1)B(i,1)=Dist(i)^2-Dist(All_num)^2-Beaconn(1,i)^2+Beaconn(1,All_num)^2-Beaconn(2,i)^2+Beaconn(2,All_num)^2;end%计算X坐标X1    = pinv(A'*A)*A'*B;X_pos = X1(1,1);%计算Y坐标z    = 0;for j=1:Best_xb    z = z + sqrt(abs(Dist(j)^2-(X_pos-Beaconn(1,j))^2));endY_pos = z/Best_xb;Loc = [X_pos;Y_pos];%点位误差error1(m) = sqrt((abs(Position_X-Loc(1)))^2+(abs(Position_Y-Loc(2)))^2);%横坐标误差error2(m) = abs(Loc(1)-Position_X);%纵坐标误差error3(m) = abs(Loc(2)-Position_Y);Number_rssis(:,m) = Number_rssi(2,:); endNumber_rssixb{Indx} = mean(Number_rssis,2);Number_xb{Indx}     = [1:Num_xb];
end
figure;
semilogy(Number_xb{1},Number_rssixb{1},'b-o');
grid on;
xlabel('信标数目');
ylabel('RSSI');
legend('信标数:30,RSSI排序后仿真图');
save result.mat Number_xb Number_rssixb
36_001m

4.算法理论概述

         基于PLE(Power-Law Equalizer)结合卡尔曼滤波的RSSI(Received Signal Strength Indicator)定位算法是一种利用无线信号强度进行位置估计的方法。该方法通过PLE算法对RSSI进行预处理,然后使用卡尔曼滤波器对处理后的数据进行位置和速度的估计。其整体流程图如下图所示:

一、基本原理

      PLE算法:PLE算法是一种用于提取信号特征的方法,它可以削弱多径效应等干扰因素对RSSI的影响,提高位置估计的准确性。PLE算法的核心思想是对接收到的信号强度进行幂次变换,将非线性关系转化为线性关系。具体公式如下:

Y = X^α

       其中,X表示接收到的信号强度,Y表示经过PLE处理后的信号强度,α为PLE算法的参数,需要根据实际环境进行调整。
      卡尔曼滤波器:卡尔曼滤波器是一种高效的递归滤波器,它可以通过对过去和现在的测量结果进行加权,估计未来的状态变量。在RSSI定位中,卡尔曼滤波器可以用于估计被定位物体的位置和速度。具体公式如下:

预测步骤:

X_pred = FX_est + BU
P_pred = FP_estF^T + Q

更新步骤:

Z_pred = HX_pred
Y = Z - Z_pred
K = P_pred
H^T*(HP_predH^T + R)^(-1)
X_est = X_pred + KY
P_est = (I - K
H)*P_pred

其中,X_est表示估计的状态变量(即位置和速度),P_est表示估计误差协方差矩阵,F表示状态转移矩阵,B表示控制输入矩阵,U表示控制输入变量,Z表示测量值,H表示观测矩阵,Q表示过程噪声协方差矩阵,R表示测量噪声协方差矩阵,K表示卡尔曼增益矩阵,Y表示测量残差,I表示单位矩阵。

二、算法流程

  1. 初始化:设定初始位置、速度、PLE算法的参数α、卡尔曼滤波器的参数(F、B、H、Q、R)等。
  2. PLE处理:对接收到的RSSI进行PLE处理,得到处理后的信号强度。
  3. 卡尔曼滤波:将处理后的信号强度作为测量值Z,使用卡尔曼滤波器进行位置和速度的估计。
  4. 更新估计值:根据卡尔曼滤波器的输出结果,更新估计的位置和速度。
  5. 迭代处理:重复执行步骤2-4,直到达到设定的迭代次数或收敛条件。
  6. 输出结果:输出最终估计的位置和速度。

三、优缺点

基于PLE结合卡尔曼滤波的RSSI定位算法具有以下优点:

  1. 可以削弱多径效应等干扰因素对RSSI的影响,提高位置估计的准确性。
  2. 通过对过去和现在的测量结果进行加权,可以减小测量噪声对位置估计的影响。
  3. 可以有效地利用RSSI的时空相关性,提高位置估计的稳定性。
  4. 具有较好的鲁棒性和适应性,可以适用于不同的环境和应用场景。

5.算法完整程序工程

OOOOO

OOO

O

http://www.lryc.cn/news/174167.html

相关文章:

  • uniapp项目实践总结(十九)版本更新和热更新实现方法
  • 一起学数据结构(8)——二叉树中堆的代码实现
  • Linux环境变量配置说明(配置jdk为例-摘录自尚硅谷技术文档)
  • idea常用插件笔记
  • 搜索二叉树【C++】
  • 华为云云耀云服务器L实例评测|认识redis未授权访问漏洞 漏洞的部分复现 设置连接密码 redis其他命令学习
  • 快速安装NGINX
  • 一台电脑远程内网的另外一台电脑,禁止远程的电脑连接外网,只允许内网连接
  • 山西电力市场日前价格预测【2023-09-24】
  • MQ---第二篇
  • C++ 创建文件并写入内容
  • 微信小程序rich-text里面写多行溢出显示省略号在ios中不显示的问题
  • 解决Win11/10中Edge浏览器页面加载不出来、打不开问题|有网但是打不开,加载不了
  • 【DRAM存储器五】DRAM存储器的架构演进-part2
  • 分享一个基于uniapp+springboot技术开发的校园失物招领小程序(源码、lw、调试)
  • RabbitMQ工作模式——Routing路由模式
  • Python字典的增删改查以及嵌套
  • 【淘宝开店】新手入门开网店教程
  • 计网第五章(运输层)(五)(TCP拥塞控制)
  • windows/ubuntu怎么修改hosts文件
  • (日积月累版)大数据基础知识点1-关系型数据库
  • 【开心消消乐】python实现-附ChatGPT解析
  • springBoot源码汇总
  • 代码随想录二刷day39
  • Spring面试题7:面试官:Spring是如何进行异常处理的呢?
  • 华为云云耀云服务器L实例评测|搭建您的私人影院网站
  • Solidity 小白教程:22. Call
  • mySQL 安装
  • 涛然自得周刊(第 10 期):搬到海岛生活是一种什么体验
  • pycharm中恢复原始界面布局_常用快捷键_常用设置