当前位置: 首页 > news >正文

【面试经典150 | 双指针】三数之和

文章目录

  • 写在前面
  • Tag
  • 题目来源
  • 题目解读
  • 解题思路
    • 方法一:暴力枚举
    • 方法二:双指针
  • 写在最后

写在前面

本专栏专注于分析与讲解【面试经典150】算法,两到三天更新一篇文章,欢迎催更……

专栏内容以分析题目为主,并附带一些对于本题涉及到的数据结构等内容进行回顾与总结,文章结构大致如下,部分内容会有增删:

  • Tag:介绍本题牵涉到的知识点、数据结构;
  • 题目来源:贴上题目的链接,方便大家查找题目并完成练习;
  • 题目解读:复述题目(确保自己真的理解题目意思),并强调一些题目重点信息;
  • 解题思路:介绍一些解题思路,每种解题思路包括思路讲解、实现代码以及复杂度分析;
  • 知识回忆:针对今天介绍的题目中的重点内容、数据结构进行回顾总结。

Tag

【双指针】【数组】


题目来源

面试经典150 | 15. 三数之和


题目解读

给你一个整数数组 nums,找出其中所有同时满足以下条件的三元组:

  • nums[i] + nums[j] + nums[k] = 0
  • i != jj != kk != i

注意:答案中不允许包含重复的三元组。


解题思路

方法一:暴力枚举

找出和为 0 的三元组,最容易想到的方法就是枚举所有可能的三元组,然后求和。但是答案中不允许包含重复的三元组,因此想到先进行排序处理,将数组 nums 中所有重复的元素放在一起,方便后续的去重处理,这一步也是后续几种方法的必要的步骤。

枚举所有可能的三元组的方法最容易想到,但是时间复杂度为 O ( n 3 ) O(n^3) O(n3) n n n 为数组 nums 的长度,本题的数据量达到 1 0 3 10^3 103,必然超时。

方法二:双指针

为了应对重复答案的情况出现,我们首先对数组 nums 进行排序处理。

接着,枚举第一个加数 nums[i],剩下两个加数的查找我们可以使用 两数之和 中双指针的思想来解决,具体地:

  • 枚举第一个加数 nums[i]
  • 如果 i >= 1nums[i] = nums[i-1],说明数字 nums[i] 已经作为第一个元素了, 我们需要则继续枚举下一个位置的 nums[i] 作为第一个加数;
  • 否则,利用双指针查找第二、三个加数:
  • 维护双指针 jk 分别指向需要查找的第二、三个数字位置,初始化 j = i + 1k = n - 1
  • 如果 nums[i] + nums[j] + nums[k] > 0,则 --k
  • 如果 nums[i] + nums[j] + nums[k] < 0,则 ++j
  • 如果 nums[i] + nums[j] + nums[k] = 0,则当前的 {nums[i], nums[j], nums[k]} 为一个满足条件的三元组并加入到 答案数组 ret 中,并且右移 j 到下一个与数字 nums[j] 的位置,左移 k 到下一个与数字 nums[k] 的位置 。

最后,返回答案数组 ret

优化

本题中还有一些可以优化的地方:

  • 如果 n < 3,即数组的长度小于 3,不会有三个数;
  • 如果排序后的 nums[0] > 0,表明数组中的所有数字都大于 0,一定不会有和为 0 的三元组;
  • 如果排序后的 nums[n-1] > 0,表明数组中的所有数字都小于 0,一定不会有和为 0 的三元组;

加上以上的优化代码,双指针解法就是最优的解法了。

实现代码

class Solution {
public:vector<vector<int>> threeSum(vector<int>& nums) {vector<vector<int>> ret;int n = nums.size();sort(nums.begin(), nums.end());if(n < 3 || nums[0] > 0 || nums[n-1] < 0){return ret;}int i, j, k;for(i = 0; i < n-2; ++i){if(i && nums[i] == nums[i-1]){continue;}j = i + 1;k = n - 1;while(j < k){int target = nums[i] + nums[j] + nums[k];if(target > 0){--k;}else if(target < 0){++j;}else{ret.push_back({nums[i], nums[j], nums[k]});++j;--k;while(j < k && nums[j] == nums[j-1]) ++j;while(j < k && nums[k] == nums[k + 1]) --k;}}}return ret;}
};

复杂度分析

时间复杂度: O ( n 2 ) O(n^2) O(n2) n n n 为数组 nums 的长度,枚举第一个加数的时间复杂度为 O ( n ) O(n) O(n),利用双指针查找满足条件的第二、三个加数的时间复杂度为 O ( n ) O(n) O(n),因此总的时间复杂度为 O ( n 2 ) O(n^2) O(n2)

空间复杂度: O ( l o g n ) O(logn) O(logn),双指针解法仅使用有限个额外空间,排序占用的额外空间为 O ( l o g n ) O(logn) O(logn),因此空间复杂度为 O ( l o g n ) O(logn) O(logn)

写在最后

如果文章内容有任何错误或者您对文章有任何疑问,欢迎私信博主或者在评论区指出 💬💬💬。

如果大家有更优的时间、空间复杂度方法,欢迎评论区交流。

最后,感谢您的阅读,如果感到有所收获的话可以给博主点一个 👍 哦。

http://www.lryc.cn/news/172921.html

相关文章:

  • 现代卷积网络实战系列3:PyTorch从零构建AlexNet训练MNIST数据集
  • Django系列:Django应用(app)的创建与配置
  • Linux查看程序和动态库依赖的动态库
  • vue3 无法使用pnpm安装依赖 或 Cannot find module preinstall.js
  • C/C++连接数据库,包含完整代码。
  • AUTOSAR词典:CAN驱动Mailbox配置技术要点全解析
  • C语言 coding style
  • Python办公自动化之PDF
  • 【每日一题Day331】LC2560打家劫舍 IV | 二分查找 + 贪心
  • JVM 参数详解
  • uni-app获取地理位置
  • Learn Prompt-Prompt 高级技巧:思维链 Chain of Thought Prompting
  • Vim编辑器使用入门
  • 早餐与风景
  • 常用python代码串
  • 电脑桌面透明便签软件是哪个?
  • Git创建干净分支,本地操作不依赖任何分支
  • sqlmap tamper脚本编写
  • 5.5V-65V Vin同步降压控制器,具有线路前馈SCT82630DHKR
  • YOLOv5、YOLOv8改进:Decoupled Head解耦头
  • Prometheus+Grafana可视化监控【Redis状态】
  • 怒刷LeetCode的第6天(Java版)
  • SSL双向认证-Nginx配置
  • GO学习之 远程过程调用(RPC)
  • 八大排序(四)--------直接插入排序
  • MYSQL--存储引擎和日志管理
  • VUE之更换背景颜色
  • 大型集团借力泛微搭建语言汇率时区统一、业务协同的国际化OA系统
  • Quartz 建表语句SQL文件
  • nginx SseEmitter 长连接