当前位置: 首页 > news >正文

代码随想录算法训练营第56天 | ● 583. 两个字符串的删除操作 ● 72. 编辑距离 ● 动态规划之编辑距离总结篇

文章目录

  • 前言
  • 一、583. 两个字符串的删除操作
  • 二、72. 编辑距离
  • 三、动态规划之编辑距离总结篇
  • 总结

前言


一、583. 两个字符串的删除操作

两种思路:1.直接动态规划,求两个字符串需要删除的最小次数 2.采用子序列的和-最长公共子序列。思路一分析如下:

动规五部曲,分析如下:

  1. 确定dp数组(dp table)以及下标的含义

dp[i][j]:以i-1为结尾的字符串word1,和以j-1位结尾的字符串word2,想要达到相等,所需要删除元素的最少次数。

这里dp数组的定义有点点绕,大家要撸清思路。

  1. 确定递推公式
  • 当word1[i - 1] 与 word2[j - 1]相同的时候
  • 当word1[i - 1] 与 word2[j - 1]不相同的时候

当word1[i - 1] 与 word2[j - 1]相同的时候,dp[i][j] = dp[i - 1][j - 1];

当word1[i - 1] 与 word2[j - 1]不相同的时候,有三种情况:

情况一:删word1[i - 1],最少操作次数为dp[i - 1][j] + 1

情况二:删word2[j - 1],最少操作次数为dp[i][j - 1] + 1

情况三:同时删word1[i - 1]和word2[j - 1],操作的最少次数为dp[i - 1][j - 1] + 2

那最后当然是取最小值,所以当word1[i - 1] 与 word2[j - 1]不相同的时候,递推公式:dp[i][j] = min({dp[i - 1][j - 1] + 2, dp[i - 1][j] + 1, dp[i][j - 1] + 1});

因为 dp[i][j - 1] + 1 = dp[i - 1][j - 1] + 2,所以递推公式可简化为:dp[i][j] = min(dp[i - 1][j] + 1, dp[i][j - 1] + 1);

这里可能不少录友有点迷糊,从字面上理解 就是 当 同时删word1[i - 1]和word2[j - 1],dp[i][j-1] 本来就不考虑 word2[j - 1]了,那么我在删 word1[i - 1],是不是就达到两个元素都删除的效果,即 dp[i][j-1] + 1。

  1. dp数组如何初始化

从递推公式中,可以看出来,dp[i][0] 和 dp[0][j]是一定要初始化的。

dp[i][0]:word2为空字符串,以i-1为结尾的字符串word1要删除多少个元素,才能和word2相同呢,很明显dp[i][0] = i。

  1. 确定遍历顺序

从递推公式 dp[i][j] = min(dp[i - 1][j - 1] + 2, min(dp[i - 1][j], dp[i][j - 1]) + 1); 和dp[i][j] = dp[i - 1][j - 1]可以看出dp[i][j]都是根据左上方、正上方、正左方推出来的。

所以遍历的时候一定是从上到下,从左到右,这样保证dp[i][j]可以根据之前计算出来的数值进行计算。

  1. 举例推导dp数组

代码(思路一):

关键代码:

dp[i][j] = Math.min(dp[i - 1][j - 1] + 2, Math.min(dp[i - 1][j] + 1, dp[i][j - 1] + 1));

优化代码:

dp[i][j] = Math.min(dp[i - 1][j] + 1, dp[i][j - 1] + 1);

class Solution {public int minDistance(String word1, String word2) {int len1 = word1.length();int len2 = word2.length();int[][] dp = new int[len1+1][len2+1];for(int i =1;i<=len1;i++){dp[i][0] = i; }for(int j = 1;j<=len2;j++){dp[0][j] = j;}for(int i = 1;i<=len1;i++){for(int j =1;j<=len2;j++){if(word1.charAt(i-1) == word2.charAt(j-1)){dp[i][j] = dp[i-1][j-1];}else{dp[i][j] = Math.min(dp[i][j-1]+1,dp[i-1][j]+1);}}}return dp[len1][len2];}
}

代码(思路二):

class Solution {public int minDistance(String word1, String word2) {int len1 = word1.length();int len2 = word2.length();int[][] dp = new int[len1+1][len2+1];for(int i = 1;i<= len1;i++){for(int j = 1;j<= len2;j++){if(word1.charAt(i-1) == word2.charAt(j-1)){dp[i][j] = dp[i-1][j-1] +1;}else{dp[i][j] = Math.max(dp[i-1][j],dp[i][j-1]);}}}return len1 + len2 - 2*dp[len1][len2];}
}

二、72. 编辑距离

因为前面的铺垫,这题显得并不困难,难点在于理解;另外,本题的代码基本复制的上一题的解法一,只更改了了一行代码:

dp[i][j] = Math.min(dp[i - 1][j - 1] + 1, Math.min(dp[i - 1][j] + 1, dp[i][j - 1] + 1));

 因为题解基本一致,这里只提及了最有差异的递推公式的解:

确定递推公式

在确定递推公式的时候,首先要考虑清楚编辑的几种操作,整理如下:

if (word1[i - 1] == word2[j - 1])不操作
if (word1[i - 1] != word2[j - 1])增删换

也就是如上4种情况。

if (word1[i - 1] == word2[j - 1]) 那么说明不用任何编辑,dp[i][j] 就应该是 dp[i - 1][j - 1],即dp[i][j] = dp[i - 1][j - 1];

此时可能有同学有点不明白,为啥要即dp[i][j] = dp[i - 1][j - 1]呢?

那么就在回顾上面讲过的dp[i][j]的定义,word1[i - 1]word2[j - 1]相等了,那么就不用编辑了,以下标i-2为结尾的字符串word1和以下标j-2为结尾的字符串word2的最近编辑距离dp[i - 1][j - 1]就是 dp[i][j]了。

在下面的讲解中,如果哪里看不懂,就回想一下dp[i][j]的定义,就明白了。

在整个动规的过程中,最为关键就是正确理解dp[i][j]的定义!

if (word1[i - 1] != word2[j - 1]),此时就需要编辑了,如何编辑呢?

  • 操作一:word1删除一个元素,那么就是以下标i - 2为结尾的word1 与 j-1为结尾的word2的最近编辑距离 再加上一个操作。

dp[i][j] = dp[i - 1][j] + 1;

  • 操作二:word2删除一个元素,那么就是以下标i - 1为结尾的word1 与 j-2为结尾的word2的最近编辑距离 再加上一个操作。

dp[i][j] = dp[i][j - 1] + 1;

这里有同学发现了,怎么都是删除元素,添加元素去哪了。

word2添加一个元素,相当于word1删除一个元素,例如 word1 = "ad" ,word2 = "a"word1删除元素'd'word2添加一个元素'd',变成word1="a", word2="ad", 最终的操作数是一样! dp数组如下图所示意的:

            a                         a     d+-----+-----+             +-----+-----+-----+|  0  |  1  |             |  0  |  1  |  2  |+-----+-----+   ===>      +-----+-----+-----+a |  1  |  0  |           a |  1  |  0  |  1  |+-----+-----+             +-----+-----+-----+d |  2  |  1  |+-----+-----+

操作三:替换元素,word1替换word1[i - 1],使其与word2[j - 1]相同,此时不用增删加元素。

可以回顾一下,if (word1[i - 1] == word2[j - 1])的时候我们的操作 是 dp[i][j] = dp[i - 1][j - 1] 对吧。

那么只需要一次替换的操作,就可以让 word1[i - 1] 和 word2[j - 1] 相同。

所以 dp[i][j] = dp[i - 1][j - 1] + 1;

综上,当 if (word1[i - 1] != word2[j - 1]) 时取最小的,即:dp[i][j] = min({dp[i - 1][j - 1], dp[i - 1][j], dp[i][j - 1]}) + 1;

递归公式代码如下:

if (word1[i - 1] == word2[j - 1]) {dp[i][j] = dp[i - 1][j - 1];
}
else {dp[i][j] = min({dp[i - 1][j - 1], dp[i - 1][j], dp[i][j - 1]}) + 1;
}
class Solution {public int minDistance(String word1, String word2) {int len1 = word1.length();int len2 = word2.length();int[][] dp = new int[len1+1][len2+1];for(int i =1;i<=len1;i++){dp[i][0] = i; }for(int j = 1;j<=len2;j++){dp[0][j] = j;}for(int i = 1;i<=len1;i++){for(int j =1;j<=len2;j++){if(word1.charAt(i-1) == word2.charAt(j-1)){dp[i][j] = dp[i-1][j-1];}else{dp[i][j] = Math.min(dp[i-1][j-1]+1,Math.min(dp[i][j-1]+1,dp[i-1][j]+1));}}}return dp[len1][len2];}
}

三、动态规划之编辑距离总结篇

考虑动态规划,首先明确dp数组以及下标的含义(如果是i-1,j-1,考虑一下好处),随后是递推公式,这里需要对两个字符串(因为基本是字符串数组)的前后操作进行思考,接着进行初始化,初始化会因为dp数组的含义不同而不同;其次是根据递推公式确定遍历顺序,因此最后一步打印dp数组也成为检验的重要一步。


总结

动态规划。

http://www.lryc.cn/news/170547.html

相关文章:

  • 矩阵 m * M = c
  • Linux——IO
  • svn(乌龟svn)和SVN-VS2022插件(visualsvn) 下载
  • 开源日报 0824 | 构建UI组件和页面的前端工作坊
  • 福建三明大型工程机械3D扫描工程零件三维建模逆向抄数-CASAIM中科广电
  • 使用香橙派学习 Linux的守护进程
  • 数据治理-数据仓库和商务智能
  • CH2--x86系统架构概览
  • Immutable.js API 简介
  • HLSL 入门(一)
  • 【Docker】挂载数据卷
  • [技术干货]spring 和spring boot区别
  • 【hudi】数据湖客户端运维工具Hudi-Cli实战
  • RK3588 添加ROOT权限
  • 【云原生】k8s-----集群调度
  • 一键集成prometheus监控微服务接口平均响应时长
  • 2023/9/13 -- C++/QT
  • mybatis mapper.xml转建表语句
  • 封装使用Axios进行前后端交互
  • SOA、分布式、微服务
  • json数据传输压缩以及数据切片分割分块传输多种实现方法,大数据量情况下zlib压缩以及bytes指定长度分割
  • 移动端APP测试-如何指定测试策略、测试标准?
  • 【Redis】深入探索 Redis 主从结构的创建、配置及其底层原理
  • CSS 滚动驱动动画 scroll-timeline ( scroll-timeline-name ❤️ scroll-timeline-axis )
  • 9.19号作业
  • Mybatis学习笔记9 动态SQL
  • element表格 和后台联调
  • 基于SSM的智慧城市实验室主页系统的设计与实现
  • 怒赞,阿里P8推荐的Java面试宝典:41个专题PDF(史上最全+面试必备)
  • 线程池各个参数设置说明