当前位置: 首页 > news >正文

C# Onnx Yolov8 Fire Detect 火焰识别,火灾检测

效果

项目

 代码

using Microsoft.ML.OnnxRuntime.Tensors;
using Microsoft.ML.OnnxRuntime;
using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using OpenCvSharp;
using static System.Net.Mime.MediaTypeNames;namespace Onnx_Yolov8_Fire_Detect
{public partial class Form1 : Form{public Form1(){InitializeComponent();}string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";string image_path = "";string startupPath;string classer_path;DateTime dt1 = DateTime.Now;DateTime dt2 = DateTime.Now;string model_path;Mat image;DetectionResult result_pro;Mat result_image;SessionOptions options;InferenceSession onnx_session;Tensor<float> input_tensor;List<NamedOnnxValue> input_ontainer;IDisposableReadOnlyCollection<DisposableNamedOnnxValue> result_infer;DisposableNamedOnnxValue[] results_onnxvalue;Tensor<float> result_tensors;Result result;StringBuilder sb=new StringBuilder();private void Form1_Load(object sender, EventArgs e){startupPath = System.Windows.Forms.Application.StartupPath;model_path = startupPath + "\\fire.onnx";classer_path = startupPath + "\\lable.txt";// 创建输出会话,用于输出模型读取信息options = new SessionOptions();options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;// 设置为CPU上运行options.AppendExecutionProvider_CPU(0);// 创建推理模型类,读取本地模型文件onnx_session = new InferenceSession(model_path, options);//model_path 为onnx模型文件的路径// 输入Tensorinput_tensor = new DenseTensor<float>(new[] { 1, 3, 640, 640 });// 创建输入容器input_ontainer = new List<NamedOnnxValue>();}private void button1_Click(object sender, EventArgs e){OpenFileDialog ofd = new OpenFileDialog();ofd.Filter = fileFilter;if (ofd.ShowDialog() != DialogResult.OK) return;pictureBox1.Image = null;image_path = ofd.FileName;pictureBox1.Image = new Bitmap(image_path);textBox1.Text = "";image = new Mat(image_path);pictureBox2.Image = null;}private void button2_Click(object sender, EventArgs e){if (image_path == ""){return;}// 配置图片数据image = new Mat(image_path);int max_image_length = image.Cols > image.Rows ? image.Cols : image.Rows;Mat max_image = Mat.Zeros(new OpenCvSharp.Size(max_image_length, max_image_length), MatType.CV_8UC3);Rect roi = new Rect(0, 0, image.Cols, image.Rows);image.CopyTo(new Mat(max_image, roi));float[] result_array = new float[8400 * 1];float[] factors = new float[2];factors[0] = factors[1] = (float)(max_image_length / 640.0);// 将图片转为RGB通道Mat image_rgb = new Mat();Cv2.CvtColor(max_image, image_rgb, ColorConversionCodes.BGR2RGB);Mat resize_image = new Mat();Cv2.Resize(image_rgb, resize_image, new OpenCvSharp.Size(640, 640));// 输入Tensorfor (int y = 0; y < resize_image.Height; y++){for (int x = 0; x < resize_image.Width; x++){input_tensor[0, 0, y, x] = resize_image.At<Vec3b>(y, x)[0] / 255f;input_tensor[0, 1, y, x] = resize_image.At<Vec3b>(y, x)[1] / 255f;input_tensor[0, 2, y, x] = resize_image.At<Vec3b>(y, x)[2] / 255f;}}//将 input_tensor 放入一个输入参数的容器,并指定名称input_ontainer.Add(NamedOnnxValue.CreateFromTensor("images", input_tensor));dt1 = DateTime.Now;//运行 Inference 并获取结果result_infer = onnx_session.Run(input_ontainer);dt2 = DateTime.Now;// 将输出结果转为DisposableNamedOnnxValue数组results_onnxvalue = result_infer.ToArray();// 读取第一个节点输出并转为Tensor数据result_tensors = results_onnxvalue[0].AsTensor<float>();result_array = result_tensors.ToArray();resize_image.Dispose();image_rgb.Dispose();result_pro = new DetectionResult(classer_path, factors);result = result_pro.process_result(result_array);result_image = result_pro.draw_result(result, image.Clone());if (!result_image.Empty()){pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());sb.Clear();sb.AppendLine("推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms");sb.AppendLine("------------------------------");for (int i = 0; i < result.length; i++){sb.AppendLine(string.Format("{0}:{1},({2},{3},{4},{5})", result.classes[i], result.scores[i].ToString("0.00"), result.rects[i].TopLeft.X, result.rects[i].TopLeft.Y, result.rects[i].BottomRight.X, result.rects[i].BottomRight.Y));}textBox1.Text = sb.ToString();}else{textBox1.Text = "无信息";}}}
}

Demo下载

http://www.lryc.cn/news/169967.html

相关文章:

  • 线程安全问题
  • 【力扣每日一题】2023.9.18 打家劫舍Ⅲ
  • Docker基础学习
  • esbuild中文文档-路径解析配置项(Path resolution - Alias、Conditions)
  • 您的应用存在隐藏最近任务列表名称的行为,不符合华为应用市场审核标准
  • Spring的 webFlux 和 webMVC
  • 【洛谷算法题】P5706-再分肥宅水【入门1顺序结构】
  • android studio环境搭建让你的开发之旅更加简单
  • Java面试_并发编程_线程基础
  • 基于Java的高校实习管理系统设计与实现(亮点:实习记录、实习打分、实习作业,功能新颖、老师没见过、当场唬住!)
  • 傅里叶变换
  • Vue Grid Layout -️ 适用Vue.js的栅格布局系统,在vue3+上使用
  • Electron(v26.2.1)无法加载React Developer Tools(v4.28.0)
  • 网站降权的康复办法(详解百度SEO数据分析)
  • 非对称加密、解密原理及openssl中的RSA示例代码
  • 基于springboot漫画管理系统springboot001
  • 【探索C++】string类详解
  • python 第一次作业
  • 个人博客网站一揽子:Docker建站(Nginx、Wordpress、MySql)
  • Unity 课时 4 : No.4 模拟面试题
  • Golang 基础面试题 01
  • 007-第一代软件需求整理
  • XMLHttpRequest介绍
  • 阿里云无影云电脑和传统PC有什么区别?
  • 基于matlab实现的船舶横摇运动仿真程序
  • Java手写二叉索引树和二叉索引树应用拓展案例
  • 大数据知识点之大数据5V特征
  • Java的Socket通信的断网重连的正确写法
  • Rocketmq--消息发送和接收演示
  • ArcGIS Pro将SHP文件转CAD并保留图层名称