当前位置: 首页 > news >正文

【Graph Net学习】GNN/GCN代码实战

一、简介

        GNN(Graph Neural Network)和GCN(Graph Convolutional Network)都是基于图结构的神经网络模型。本文目标就是打代码基础,未用PyG,来扒一扒Graph Net两个基础算法的原理。直接上代码。

二、代码

import time
import random
import os
import numpy as np
import math
from torch.nn.parameter import Parameter
from torch.nn.modules.module import Moduleimport torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optimimport scipy.sparse as sp#配置项
class configs():def __init__(self):# Dataself.data_path = r'E:\code\Graph\data'self.save_model_dir = r'\code\Graph'self.model_name = r'GCN' #GNN/GCNself.seed = 2023self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")self.batch_size = 64self.epoch = 200self.in_features = 1433  #core ~ feature:1433self.hidden_features = 16  # 隐层数量self.output_features = 8  # core~paper-point~ 8类self.learning_rate = 0.01self.dropout = 0.5self.istrain = Trueself.istest = Truecfg = configs()def seed_everything(seed=2023):random.seed(seed)os.environ['PYTHONHASHSEED']=str(seed)np.random.seed(seed)torch.manual_seed(seed)seed_everything(seed = cfg.seed)#数据
class Graph_Data_Loader():def __init__(self):self.adj, self.features, self.labels, self.idx_train, self.idx_val, self.idx_test = self.load_data()self.adj = self.adj.to(cfg.device)self.features = self.features.to(cfg.device)self.labels = self.labels.to(cfg.device)self.idx_train = self.idx_train.to(cfg.device)self.idx_val = self.idx_val.to(cfg.device)self.idx_test = self.idx_test.to(cfg.device)def load_data(self,path=cfg.data_path, dataset="cora"):"""Load citation network dataset (cora only for now)"""print('Loading {} dataset...'.format(dataset))idx_features_labels = np.genfromtxt(os.path.join(path,dataset,dataset+'.content'),dtype=np.dtype(str))features = sp.csr_matrix(idx_features_labels[:, 1:-1], dtype=np.float32)labels = self.encode_onehot(idx_features_labels[:, -1])# build graphidx = np.array(idx_features_labels[:, 0], dtype=np.int32)idx_map = {j: i for i, j in enumerate(idx)}edges_unordered = np.genfromtxt(os.path.join(path,dataset,dataset+'.cites'),dtype=np.int32)edges = np.array(list(map(idx_map.get, edges_unordered.flatten())),dtype=np.int32).reshape(edges_unordered.shape)adj = sp.coo_matrix((np.ones(edges.shape[0]), (edges[:, 0], edges[:, 1])),shape=(labels.shape[0], labels.shape[0]),dtype=np.float32)# build symmetric adjacency matrixadj = adj + adj.T.multiply(adj.T > adj) - adj.multiply(adj.T > adj)features = self.normalize(features)adj = self.normalize(adj + sp.eye(adj.shape[0]))idx_train = range(140)idx_val = range(200, 500)idx_test = range(500, 1500)features = torch.FloatTensor(np.array(features.todense()))labels = torch.LongTensor(np.where(labels)[1])adj = self.sparse_mx_to_torch_sparse_tensor(adj)idx_train = torch.LongTensor(idx_train)idx_val = torch.LongTensor(idx_val)idx_test = torch.LongTensor(idx_test)return adj, features, labels, idx_train, idx_val, idx_testdef encode_onehot(self,labels):classes = set(labels)classes_dict = {c: np.identity(len(classes))[i, :] for i, c inenumerate(classes)}labels_onehot = np.array(list(map(classes_dict.get, labels)),dtype=np.int32)return labels_onehotdef normalize(self,mx):"""Row-normalize sparse matrix"""rowsum = np.array(mx.sum(1))r_inv = np.power(rowsum, -1).flatten()r_inv[np.isinf(r_inv)] = 0.r_mat_inv = sp.diags(r_inv)mx = r_mat_inv.dot(mx)return mxdef sparse_mx_to_torch_sparse_tensor(self,sparse_mx):"""Convert a scipy sparse matrix to a torch sparse tensor."""sparse_mx = sparse_mx.tocoo().astype(np.float32)indices = torch.from_numpy(np.vstack((sparse_mx.row, sparse_mx.col)).astype(np.int64))values = torch.from_numpy(sparse_mx.data)shape = torch.Size(sparse_mx.shape)return torch.sparse.FloatTensor(indices, values, shape)#精度评价指标
def accuracy(output, labels):preds = output.max(1)[1].type_as(labels)correct = preds.eq(labels).double()correct = correct.sum()return correct / len(labels)#模型
#01-GNN
class GNNLayer(nn.Module):def __init__(self, in_features, output_features):super(GNNLayer, self).__init__()self.linear = nn.Linear(in_features, output_features)def forward(self, adj_matrix, features):hidden_features = torch.matmul(adj_matrix, features)  # GNN公式:H' = A * Hhidden_features = self.linear(hidden_features)  # 使用线性变换hidden_features = F.relu(hidden_features)  # 使用ReLU作为激活函数return hidden_features
class GNN(nn.Module):def __init__(self, in_features, hidden_features, output_features, num_layers=2):super(GNN, self).__init__()#输入维度in_features、隐藏层维度hidden_features、输出维度output_features、GNN的层数num_layersself.layers = nn.ModuleList([GNNLayer(in_features, hidden_features) if i == 0 else GNNLayer(hidden_features, hidden_features) for i inrange(num_layers)])self.output_layer = nn.Linear(hidden_features, output_features)def forward(self, adj_matrix, features):hidden_features = featuresfor layer in self.layers:hidden_features = layer(adj_matrix, hidden_features)output = self.output_layer(hidden_features)return F.log_softmax(output,dim=1)#02-GCN
class GraphConvolution(Module):"""Simple GCN layer, similar to https://arxiv.org/abs/1609.02907"""def __init__(self, in_features, out_features, bias=True):super(GraphConvolution, self).__init__()self.in_features = in_featuresself.out_features = out_featuresself.weight = Parameter(torch.FloatTensor(in_features, out_features))if bias:self.bias = Parameter(torch.FloatTensor(out_features))else:self.register_parameter('bias', None)self.reset_parameters()def reset_parameters(self):stdv = 1. / math.sqrt(self.weight.size(1))self.weight.data.uniform_(-stdv, stdv)if self.bias is not None:self.bias.data.uniform_(-stdv, stdv)def forward(self, input, adj):support = torch.mm(input, self.weight)output = torch.spmm(adj, support)if self.bias is not None:return output + self.biaselse:return outputdef __repr__(self):return self.__class__.__name__ + ' (' \+ str(self.in_features) + ' -> ' \+ str(self.out_features) + ')'class GCN(nn.Module):def __init__(self, in_features, hidden_features, output_features, dropout=cfg.dropout):super(GCN, self).__init__()self.gc1 = GraphConvolution(in_features, hidden_features)self.gc2 = GraphConvolution(hidden_features, output_features)self.dropout = dropoutdef forward(self, adj_matrix, features):x = F.relu(self.gc1(features, adj_matrix))x = F.dropout(x, self.dropout, training=self.training)x = self.gc2(x, adj_matrix)return F.log_softmax(x, dim=1)class graph_run():def train(self):t = time.time()#Create Train Processingall_data = Graph_Data_Loader()#创建一个模型model = eval(cfg.model_name)(in_features=cfg.in_features,hidden_features=cfg.hidden_features,output_features=cfg.output_features).to(cfg.device)optimizer = optim.Adam(model.parameters(),lr=cfg.learning_rate, weight_decay=5e-4)#Trainmodel.train()for epoch in range(cfg.epoch):optimizer.zero_grad()output = model(all_data.adj, all_data.features)loss_train = F.nll_loss(output[all_data.idx_train], all_data.labels[all_data.idx_train])acc_train = accuracy(output[all_data.idx_train], all_data.labels[all_data.idx_train])loss_train.backward()optimizer.step()loss_val = F.nll_loss(output[all_data.idx_val], all_data.labels[all_data.idx_val])acc_val = accuracy(output[all_data.idx_val], all_data.labels[all_data.idx_val])print('Epoch: {:04d}'.format(epoch + 1),'loss_train: {:.4f}'.format(loss_train.item()),'acc_train: {:.4f}'.format(acc_train.item()),'loss_val: {:.4f}'.format(loss_val.item()),'acc_val: {:.4f}'.format(acc_val.item()),'time: {:.4f}s'.format(time.time() - t))torch.save(model, os.path.join(cfg.save_model_dir, 'latest.pth'))  # 模型保存def infer(self):#Create Test Processingall_data = Graph_Data_Loader()model_path = os.path.join(cfg.save_model_dir, 'latest.pth')model = torch.load(model_path, map_location=torch.device(cfg.device))model.eval()output = model(all_data.adj,all_data.features)loss_test = F.nll_loss(output[all_data.idx_test], all_data.labels[all_data.idx_test])acc_test = accuracy(output[all_data.idx_test], all_data.labels[all_data.idx_test])print("Test set results:","loss= {:.4f}".format(loss_test.item()),"accuracy= {:.4f}".format(acc_test.item()))if __name__ == '__main__':mygraph = graph_run()if cfg.istrain == True:mygraph.train()if cfg.istest == True:mygraph.infer()

三、结果与讨论

        需要从网上下载cora数据集,数据组织形式如下图。

        测了下Params和GFLOPs,还是比较大的,发现若作为一个Net的Block还是需要优化的哈哈~

ModelParamsGFLOPs
GNN23.352K126.258M
ModelCora(/train/val/test)
GNN1.0000/0.7800/0.7620
GCN0.9714/0.7767/0.8290

四、展望

        未来可以考虑用PyG(PyTorch Geometric),毕竟PyG实现GAT等图网络、图的数据组织、加载会更加方便。Graph Net通常用可以用于属性数据的embedding模式,将属性数据可以作为一种补充特征加入Net去训练,看能不能发挥效能。

http://www.lryc.cn/news/169783.html

相关文章:

  • RocketMQ 发送顺序消息
  • 【面试经典150 | 双指针】判断子序列
  • 自动驾驶信息安全方案
  • 【云原生】kubernetes中pod(最小的资源管理组件)
  • [DB]数据库--lowdb
  • Kotlin | 在for、forEach循环中正确的使用break、continue
  • 【C++】详解std::mutex
  • Matlab图像处理-Lab模型
  • 分布式ETL工具Sqoop实践
  • 展会预告 | 图扑邀您共聚 IOTE 国际物联网展·深圳站
  • 如何下载安装 WampServer 并结合 cpolar 内网穿透,轻松实现对本地服务的公网访问
  • iOS添加Mapbox地图库
  • destoon根据目录下的html文件生成地图索引
  • gRPC之gRPC流
  • Kafka Shell命令交互
  • 什么是回归测试?
  • ZTMap是如何在相关政策引导下让建筑更加智慧化的?
  • Python:函数和代码复用
  • three.js——模型对象的使用材质和方法
  • sql explain
  • 【LeetCode-简单题】剑指 Offer 05. 替换空格
  • 数字虚拟人制作简明指南
  • Nginx 文件解析漏洞复现
  • Lombok依赖
  • XML 和 JSON 学习笔记(基础)
  • L1-005 考试座位号分数 15
  • 无涯教程-JavaScript - CEILING.MATH函数
  • ChatGPT提示词(prompt)资源汇总
  • MySQL 几种导数据的方法与遇到的问题
  • (21)多线程实例应用:双色球(6红+1蓝)