当前位置: 首页 > news >正文

Attention is all you need 论文笔记

该论文引入Transformer,主要核心是自注意力机制,自注意力(Self-Attention)机制是一种可以考虑输入序列中所有位置信息的机制。

RNN介绍

引入RNN为了更好的处理序列信息,比如我 吃 苹果,前后的输入之间是有联系的。

如图:

一文搞懂RNN图引用

引入Transformer的原因

  1. 解决长距离依赖的问题:传统的RNN存在梯度消失和梯度爆炸的问题,难以有效捕获长距离依赖关系。而Transformer引入了注意力机制,使模型可以在序列中捕获远距离依赖关系。
  2. 并行计算:RNN和循环连接的特点使得它们难以并行计算,限制了计算速度。相比之下,Transformer模型的注意力机制允许模型在每个时间步骤上并行计算,大大加速计算速度。
  3. 可扩展性:Transformer模型可以适用与不同长度的序列

Attention函数分析

注意力机函数值注意力机制的核心组成部分,它定义了如何计算注意力权重,以及使用这些权重聚合数据来获取上下文表示。注意力函数包括:

  • Query:查询用于确定关注哪些输入元素的向量或表示。在自注意力机制中,通常是前一个时间步骤的隐藏状态或者上下文表示。
  • key:键是与输入元素相关的向量表示。注意力机制通过比较query和key的相似性来决定要关注哪些输入
  • value:值是与键对应的输入元素的向量或表示。注意力机制根据query和key的相似性来为每个值分配权重,这些权重将用于生成上下文表示。
  • score:分数表示key和query的相似性,分数越高表示查询更关注与键相关的输入。例如向量a和向量b,它的点积a·b = |a||b|cos\Theta\Theta越小,cos\Theta越大,两个向量之间 相似性越高。
  • 注意力权重:是一个概率分布,表示对每个输入元素的关注程度。通常由softmax得到,确保总和为1.
  • 上下文表示:通过注意力权重对值进行加权求和得到,它是对输入元素的聚合表示,反应了模型的关注点。

注意力函数的一般计算步骤

  1. 计算query和key的相似性分数,通过点积、加性模型或者缩放点积等方式实现。
  2. 对相似性分数进行softmax操作,以此获得注意力权重,确保他们归一化为概率分布。
  3. 使用注意力权重对值加权求和,以此生成上下文表示。

对于自注意力机制来说

  1. query、key、value:自注意力的核心是通过三个线性变换来为每个位置生成这三个向量。这些向量在输入序列中的每个位置都有一个。对于给定的位置,query 用于提出问题,key 用于提供答案的位置信息,而value 包含了实际的信息。
  2. 计算注意力分数:计算分数通过将query和所有位置的key 进行点积操作得到的。注意力分户可以看成是度量两个位置之间关联性的分数,他表示了一个位置对于其他位置的关注程度。
  3. softmax 操作进行归一化:为了获得有效的注意力权重,对计算得到的注意力分数进行归一化处理。为了确保每个位置权重是有效的概率分布,从而更好的表达位置之间的关联性。
  4. 计算加权和:对得到的归一化之后的注意力权重和对应位置的value进行加权求和,得到每个位置的上下文表示。

多头注意力机制

是一种扩展的自注意力机制,它允许模型同时学习多个不同的关注模式。多头注意力机制将自注意力计算分为多个头,每个头学习不同的权重矩阵,以捕获不同类型的关联性。多个头的结果会拼接或合并,然后通过线性变换进行投影。

选择缩放点积原因

  1. 点积和加性注意力理论复杂度相似,但是在实践中点积注意力的速度更快、更节省空间,因为它可以使用高度优化的矩阵乘法代码来实现
  2. 对于键K的维度d_{k}越大,加性注意力的性能比点击好,所以我们怀疑对于很大的维度,点积会大幅度增长,为了抵消这种影响,我们使用缩小点积。

缩放点积

是注意力机制中一种常见的类型,通过和自注意力机制一起使用,它的目的是确保在计算注意力分数的时候,使得范围适中,避免梯度消失或者梯度爆炸。下面是介绍缩放点积的步骤:

  • Query、Key、Value:这是缩放点积的三个输入,通常来自于一个序列。
  • 相似性分数计算:计算查询和键之间的相似性。将查询和键之间的点积作为相似性分数。具体而言就是,对于给定的查询Q和键K,计算相似性分数矩阵为:
    Score = Q*K^T
    其中K^T表示键K的转置矩阵。每个Scores[i][j]表示查询的第i个元素和键的第j个元素的相似性。
  • 缩放:为了稳定训练过程,缩放点积对相似性分数进行缩放操作,通过操作是除以一个缩放因子来实现。缩放因子通常是键K的维度d_{k}的平方根。即:\sqrt{d_{k}}.缩放后的相似性分数Scale_Scores有助于控制梯度大小,防止梯度爆炸或者消失。
    Scale_Scores = Scores / sqrt(d_k)
  • 计算注意力权重:对缩放后的相似性分数进行softmax操作,将其转化为概率分布,得到注意力权重。这些权重表示了对输入序列不同位置的关注程度。
    attention_weight = softmax(Scale_Scores)

结论

在这项工作中,提出了 Transformer,这是一个完全基于注意力的序列转换模型。注意,用多头自注意力取代了编码器-解码器架构中最常用的递归层。

http://www.lryc.cn/news/168584.html

相关文章:

  • Hdoop伪分布式集群搭建
  • java临时文件
  • C++中的<string>头文件 和 <cstring>头文件简介
  • 安装MySQL
  • 输入学生成绩,函数返回最大元素的数组下标,求最高分学生成绩(输入负数表示输入结束)
  • 常用音频接口:TDM,PDM,I2S,PCM
  • git clone报错Failed to connect to github.com port 443 after 21055 ms:
  • 【操作系统】深入浅出死锁问题
  • springboot实现webSocket服务端和客户端demo
  • 代码走读: FFMPEG-ffplayer02
  • 【数据结构】——排序算法的相关习题
  • C高级day5(Makefile)
  • Android 系统中适配OAID获取
  • 差分数组leetcode 2770 数组的最大美丽值
  • 请求响应状态码
  • 安卓机型系统美化 Color.xml文件必备常识 自定义颜色资源
  • YOLO物体检测-系列教程1:YOLOV1整体解读(预选框/置信度/分类任/回归任务/损失函数/公式解析/置信度/非极大值抑制)
  • 2023/9/12 -- C++/QT
  • 【Purple Pi OH RK3566鸿蒙开发板】OpenHarmony音频播放应用,真实体验感爆棚!
  • Android rom开发:9.0系统上实现4G wifi 以太网共存
  • 高速自动驾驶HMI人机交互
  • 【自然语言处理】关系抽取 —— SOLS 讲解
  • 周易算卦流程c++实现
  • 软件架构设计(十三) 构件与中间件技术
  • PyTorch深度学习实战——基于ResNet模型实现猫狗分类
  • 机器学习第六课--朴素贝叶斯
  • 基于Java+SpringBoot+Vue的图书借还小程序的设计与实现(亮点:多角色、点赞评论、借书还书、在线支付)
  • 【校招VIP】前端计算机网络之UDP相关
  • 前缀和实例4(和可被k整除的子数组)
  • Android获取系统读取权限