当前位置: 首页 > news >正文

【深度学习】Pytorch 系列教程(十):PyTorch数据结构:2、张量操作(Tensor Operations):(4)索引和切片详解

目录

一、前言

二、实验环境

三、PyTorch数据结构

0、分类

1、张量(Tensor)

2、张量操作(Tensor Operations)

1. 数学运算

2. 统计计算

3. 张量变形

4. 索引和切片

使用索引访问单个元素

使用切片访问子集

使用索引和切片进行修改

布尔索引(Boolean indexing)

高级切片(Advanced slicing)


一、前言

ChatGPT:

        PyTorch是一个开源的机器学习框架,广泛应用于深度学习领域。它提供了丰富的工具和库,用于构建和训练各种类型的神经网络模型。下面是PyTorch的一些详细介绍:

  1. 动态计算图:PyTorch使用动态计算图的方式进行计算,这意味着在运行时可以动态地定义、修改和调整计算图,使得模型的构建和调试更加灵活和直观。

  2. 强大的GPU加速支持:PyTorch充分利用GPU进行计算,可以大幅提升训练和推理的速度。它提供了针对GPU的优化操作和内存管理,使得在GPU上运行模型更加高效。

  3. 自动求导:PyTorch内置了自动求导的功能,可以根据定义的计算图自动计算梯度。这简化了反向传播算法的实现,使得训练神经网络模型更加便捷。

  4. 大量的预训练模型和模型库:PyTorch生态系统中有许多预训练的模型和模型库可供使用,如TorchVision、TorchText和TorchAudio等,可以方便地加载和使用这些模型,加快模型开发的速度。

  5. 高级抽象接口:PyTorch提供了高级抽象接口,如nn.Modulenn.functional,用于快速构建神经网络模型。这些接口封装了常用的神经网络层和函数,简化了模型的定义和训练过程。

  6. 支持分布式训练:PyTorch支持在多个GPU和多台机器上进行分布式训练,可以加速训练过程,处理大规模的数据和模型。

        总体而言,PyTorch提供了一个灵活而强大的平台,使得深度学习的研究和开发更加便捷和高效。它的简洁的API和丰富的功能使得用户可以快速实现复杂的神经网络模型,并在各种任务中取得优秀的性能。

二、实验环境

        本系列实验使用如下环境

conda create -n DL python=3.7 
conda activate DL
pip install torch==1.8.1+cu102 torchvision==0.9.1+cu102 torchaudio==0.8.1 -f https://download.pytorch.org/whl/torch_stable.html
conda install matplotlib

关于配置环境问题,可参考前文的惨痛经历:

三、PyTorch数据结构

0、分类

  • Tensor(张量):Tensor是PyTorch中最基本的数据结构,类似于多维数组。它可以表示标量、向量、矩阵或任意维度的数组。
    • Tensor的操作:PyTorch提供了丰富的操作函数,用于对Tensor进行各种操作,如数学运算、统计计算、张量变形、索引和切片等。这些操作函数能够高效地利用GPU进行并行计算,加速模型训练过程。
  • Variable(变量):Variable是对Tensor的封装,用于自动求导。在PyTorch中,Variable会自动跟踪和记录对其进行的操作,从而构建计算图并支持自动求导。在PyTorch 0.4.0及以后的版本中,Variable被废弃,可以直接使用Tensor来进行自动求导。
  • Dataset(数据集):Dataset是一个抽象类,用于表示数据集。通过继承Dataset类,可以自定义数据集,并实现数据加载、预处理和获取样本等功能。PyTorch还提供了一些内置的数据集类,如MNIST、CIFAR-10等,用于方便地加载常用的数据集。
  • DataLoader(数据加载器):DataLoader用于将Dataset中的数据按批次加载,并提供多线程和多进程的数据预读功能。它可以高效地加载大规模的数据集,并支持数据的随机打乱、并行加载和数据增强等操作。
  • Module(模块):Module是PyTorch中用于构建模型的基类。通过继承Module类,可以定义自己的模型,并实现前向传播和反向传播等方法。Module提供了参数管理、模型保存和加载等功能,方便模型的训练和部署。

1、张量(Tensor

        

【深度学习】Pytorch 系列教程(一):PyTorch数据结构:1、Tensor(张量):维度(Dimensions)、数据类型(Data Types)_QomolangmaH的博客-CSDN博客https://blog.csdn.net/m0_63834988/article/details/132909219?spm=1001.2014.3001.5501https://blog.csdn.net/m0_63834988/article/details/132909219?spm=1001.2014.3001.5501​编辑https://blog.csdn.net/m0_63834988/article/details/132909219?spm=1001.2014.3001.5501​编辑https://blog.csdn.net/m0_63834988/article/details/132909219?spm=1001.2014.3001.5501icon-default.png?t=N7T8https://blog.csdn.net/m0_63834988/article/details/132909219?spm=1001.2014.3001.5501

2、张量操作(Tensor Operations)

        PyTorch提供了丰富的操作函数,用于对Tensor进行各种操作,如数学运算、统计计算、张量变形、索引和切片等。这些操作函数能够高效地利用GPU进行并行计算,加速模型训练过程。

1. 数学运算

2. 统计计算

3. 张量变形

4. 索引和切片

        在PyTorch中,可以使用索引和切片操作来访问和修改张量的特定元素或子集。

  • 使用索引访问单个元素

使用方括号和索引值来访问张量中的单个元素。索引值从0开始,并沿着每个维度进行指定。

import torchx = torch.tensor([[1, 2, 3], [4, 5, 6]])
print(x[0, 1])  # 访问第0行、第1列的元素

输出:

tensor(2)
  • 使用切片访问子集

        可以使用冒号(:)进行切片操作,以访问张量的子集。冒号可以用来指定起始索引、结束索引和步长。

import torchx = torch.tensor([[1, 2, 3], [4, 5, 6]])
print(x[:, 1:])  # 访问所有行的第1列及之后的元素

输出:

tensor([[2, 3],[5, 6]])
  • 使用索引和切片进行修改

        可以使用索引和切片操作来修改张量中的特定元素或子集。

import torchx = torch.tensor([[1, 2, 3], [4, 5, 6]])
x[0, 1] = 9  # 修改第0行、第1列的元素为9
print(x)

输出:

tensor([[1, 9, 3],[4, 5, 6]])

  • 布尔索引(Boolean indexing)

        使用布尔张量作为索引,可以选择与布尔张量中相应位置为True的元素。布尔张量的形状必须与被索引的张量的形状相匹配。

import torchtensor = torch.tensor([[1, 2, 3],[4, 5, 6],[7, 8, 9]])# 使用布尔索引选择元素
bool_index = tensor[tensor > 5]
print("布尔索引选择的元素:", bool_index)

输出:

tensor([6, 7, 8, 9])

  • 高级切片(Advanced slicing)

    除了基本的切片操作外,还可以使用逗号将多个切片组合在一起,实现对不同维度的切片操作。

import torchtensor = torch.tensor([[1, 2, 3],[4, 5, 6],[7, 8, 9]])# 使用高级切片选择子集
advanced_slice = tensor[1:, ::2]
print("高级切片选择的子集:\n", advanced_slice)

输出:

tensor([[4, 6],[7, 9]])

使用高级切片选择了张量中从第二行开始到最后一行的子集,并且每隔一列选择一个元素。

http://www.lryc.cn/news/168108.html

相关文章:

  • 2024字节跳动校招面试真题汇总及其解答(三)
  • 基于springboot+vue的便利店信息管理系统
  • 在ubuntu18.04上编译C++版本jsoncpp/opencv/onnxruntime且如何配置CMakelist把他们用起来~
  • 大二上学期学习计划
  • 【python爬虫—星巴克产品】
  • shell SQL 变量 Oracle shell调用SQL操作DB
  • 【校招VIP】java线程池考点之核心线程数
  • [每周一更]-(第61期):Rust入门策略(持续更新)
  • 线程安全问题的原因及解决方案
  • 基于matlab中点放炮各类地震波时距曲线程序
  • vue中el-dialog 中的内容没有预先加载,因此无法获得内部元素的ref 的解决方案 使用强制提前加载dialog方法
  • vue-h5移动Web的rem配置
  • 企业级数据仓库-数仓实战
  • Spring Boot 下载文件(word/excel等)文件名中文乱码问题|构建打包不存在模版文件(templates等)
  • Ansible数组同步至Shell脚本数组中
  • 私域流量的优势
  • Java 中“1000==1000”为false,而”100==100“为true?
  • 片上网络(1)概述
  • 使用 React Native 针对 Android 进行开发
  • LeetCode 每日一题 2023/9/11-2023/9/17
  • Linux系统调试篇——GDBSERVER远程调试
  • 前端实现打字效果
  • Unix和Linux、GNU和GPL、RHEL和Centos、Debian和Ubuntu
  • InfiniBand vs 光纤通道,存储协议的选择
  • 第2章_freeRTOS入门与工程实践之单片机程序设计模式
  • python LeetCode 刷题记录 58
  • HarmonyOS开发:那些开发中常见的问题汇总(一)
  • 新能源汽车驱动电机的基本知识
  • 流媒体协议——RTSP
  • Arcgis提取点数据经纬度