当前位置: 首页 > news >正文

栈与队列经典题目——用队列实现栈

本篇文章讲解栈和队列这一部分知识点的经典题目:用栈实现队列、用队列实现栈。对应的题号分别为:Leetcode.225——用队列实现栈,。

在对两个题目进行解释之前,先回顾以下栈和队列的特点与不同:

栈是一种特殊的线性表,并且只能在尾部进行插入、删除的操作。对于栈的实现,可以通过顺序表或者链表的思路来达成。但是,参考栈只能在尾部进行插入、删除操作的特点。一般采用顺序表进行实现。

队列也是一种特殊的线性表,只能在队尾进行插入操作,在队头进行删除操作。鉴于队列的这一性质,一般采用链表来实现队列。

1.Leetcode.225——用队列实现栈:

题目如下:

1.1 思路分析:

给出下列一个栈:


在栈中,遵从后进先出的原则。但是,本题要求是利用队列来实现栈。对于队列来说,出数据只能从队头进行。题目中要求利用两个队列来实现栈的功能,对于本功能,思路如下:
给定下面两个队列,分别命名为queue1,queue2

按照题目中的要求,需要移除元素4。对于队列来说,移除元素只能从队头进行。所以,先把queue1中的元素1,2,3都移动到queue2中。此时效果如下:

此时,再对queue1进行一次取队头元素的操作即可。 下面为了方便表达,将queue1简称为q1,queue2简称为q2

由上述分析可知。解决本题的关键就是在使用两个队列时,需要让一个队列中存储元素,另一个队列保持为空。当需要进行返回栈顶元素的操作时,再让为空的队列保存另一个队列中的前N-1项元素。所以,q1,q2一个队列用于存储元素,一个用于保持空状态为了方便表达。下面,会默认创建两个结构体指针:empty,来存储q1的地址,noempty来存储q2的地址。并在后续会针对二者谁为空进行判断。

(注:下面只给出各种给定功能的实现方法,在进行解题时,需要预先将编写好的xiami码复制到题目上方,本文采用一起学数据结构(6)——栈和队列_起床写代码啦!的博客-CSDN博客

中的队列) 

1.2 各功能的实现:

 1.2.1 栈的创建及初始化myStackCreate

前面说到,需要一个用于存储元素的队列,一个保持空状态的队列。但是对于二者谁为空,在后续的操作myStackPush中进行判断即可。在本功能中不需要进行判断。代码如下:

//创建队列
typedef struct {Que q1;Que q2;
} MyStack;//初始化队列,注意,返回值返回地址,需要采用malloc返回以保证返回时不会因为变量的局部性成为野指针
MyStack* myStackCreate() {MyStack* obj = (MyStack*)malloc(sizeof(MyStack));QueueInit(&obj->q1);QueueInit(&obj->q2);return obj;
}

1.2.2 向栈中插入元素myStackPush

为了保证empty为空,noempty不为空,所以,在向栈中插入元素时,需要向noempty中插入。在初始化这一步骤中,并没有分辨哪个队列为空,在本步骤并不需要明确知道哪个队列为空,只需要利用QueueEmpty函数判断队列q1,q2是否为空,如果q1为空,此时q1empty,直接向q2中进行插入,反之则向q1中插入,代码如下:

void myStackPush(MyStack* obj, int x) {if(!QueueEmpty(&obj->q1)){QueuePush(&obj->q1,x);}else{QueuePush(&obj->q2,x);}
}

1.2.3 移除并返回栈顶元素 myStackPop:

在思路分析中,已经给出了该功能的实现方法。即,让noempty指向的队列中的前N-1项元素移动到empty所对应的元素。在移动元素之前,需要先判断q1,q2哪个队列为空。方法如下:

首先创建结构体指针emptynoempty。让二者分别指向队列q1,q2。利用QueueEmpty函数判断此时的empty是否为空,若为空,则不做改变。若不为空,则令emptynoempty中存储的地址交换。

代码如下:

int myStackPop(MyStack* obj) {Que* noempty = &obj->q1;Que* empty = &obj->q2;if(!QueueEmpty(empty)){noempty = &obj->q2;empty = &obj->q1;} }

再判断出q1,q2哪个队列为empty,哪个队列为noempty后,进行下一步。首先,利用QueueFront函数取出noempty中的队头元素,再利用QueuePush函数将QueueFront取出的元素插入到noempty中。

题目要求,移除并且返回。所以需要额外创建一个变量Top用于存储栈顶元素。之后再利用QueuePop函数移除栈顶元素,最后返回Top即可。代码如下:
 

int myStackPop(MyStack* obj) {Que* noempty = &obj->q1;Que* empty = &obj->q2;if(!QueueEmpty(empty)){noempty = &obj->q2;empty = &obj->q1;}while( QueueSize(noempty) > 1){QueuePush(empty,QueueFront(noempty));QueuePop(noempty);}int Top = QueueFront(noempty);QueuePop(noempty);return Top;}

1.2.4 返回栈顶元素myStackTop

栈顶元素所对应的位置就是队列的队尾。所以,只需要采用向栈中插入元素的方法,通过QueueEmpty函数,对不满足QueueEmpty的队列(即非空队列)调用QueueBack函数,返回函数的返回值即可。代码如下:

int myStackTop(MyStack* obj) {if(!QueueEmpty(&obj->q1)){return QueueBack(&obj->q1);}else{return QueueBack(&obj->q2);}
}

1.2.5 探空myStackEmpty:

原理较为简单,只给出代码:

bool myStackEmpty(MyStack* obj) {return QueueEmpty(&obj->q1) && QueueEmpty(&obj->q2);}

1.2.6 释放动态开辟的空间myStackFree:
代码如下:

void myStackFree(MyStack* obj) {QueueDestory(&obj->q1);QueueDestory(&obj->q2);free(obj);
}

2.结果展示及题解代码总览:

2.1 结果展示:


 

2.2 题解代码总览:

typedef int QDataType;
typedef struct QueueNode
{struct QueueNode* next;QDataType data;
}QNode;typedef struct Queue
{QNode* phead;QNode* tail;int size;
}Que;//初始化
void QueueInit(Que* ps);
//销毁
void QueueDestory(Que* ps);
//插入元素
void QueuePush(Que* ps, QDataType x);
//删除元素
void QueuePop(Que* ps);
//取头部元素
QDataType QueueFront(Que* ps);
//取尾部元素
QDataType QueueBack(Que* ps);
//探空
bool QueueEmpty(Que* ps);
//求长度
int QueueSize(Que* ps);void QueueInit(Que* ps)
{assert(ps);ps->phead = ps->tail = 0;ps->size = 0;
}void QueuePush(Que* ps, QDataType x)
{assert(ps);QNode* newnode = (QNode*)malloc(sizeof(QNode));if (newnode == NULL){perror("malloc");exit(-1);}newnode->next = NULL;newnode->data = x;if (ps->tail == NULL){ps->phead = ps->tail = newnode;}else{ps->tail->next = newnode;ps->tail = newnode;}ps->size++;
}void QueuePop(Que* ps)
{assert(ps);assert(!QueueEmpty(ps));if (ps->phead->next == NULL){free(ps->phead);ps->phead = ps->tail = NULL;}else{QNode* next = ps->phead->next;free(ps->phead);ps->phead = next;}ps->size--;
}QDataType QueueFront(Que* ps)
{assert(ps);assert(!QueueEmpty(ps));return ps->phead->data;
}QDataType QueueBack(Que* ps)
{assert(ps);assert(!QueueEmpty(ps));return ps->tail->data;
}bool QueueEmpty(Que* ps)
{assert(ps);return ps->phead == NULL;
}int QueueSize(Que* ps)
{assert(ps);return ps->size;
}void QueueDestory(Que* ps)
{assert(ps);QNode* cur = ps->phead;while (cur){QNode* next = cur->next;free(cur);cur = next;}ps->phead = ps->tail = NULL;ps->size = 0;
}//创建队列
typedef struct {Que q1;Que q2;
} MyStack;//初始化队列,注意,返回值返回地址,需要采用malloc返回以保证返回时不会因为变量的局部性成为野指针
MyStack* myStackCreate() {MyStack* obj = (MyStack*)malloc(sizeof(MyStack));QueueInit(&obj->q1);QueueInit(&obj->q2);return obj;
}void myStackPush(MyStack* obj, int x) {if(!QueueEmpty(&obj->q1)){QueuePush(&obj->q1,x);}else{QueuePush(&obj->q2,x);}
}//思路:将非空队列中前N-1项元素移到空队列中
int myStackPop(MyStack* obj) {Que* noempty = &obj->q1;Que* empty = &obj->q2;if(!QueueEmpty(empty)){noempty = &obj->q2;empty = &obj->q1;}while( QueueSize(noempty) > 1){QueuePush(empty,QueueFront(noempty));QueuePop(noempty);}int Top = QueueFront(noempty);QueuePop(noempty);return Top;}int myStackTop(MyStack* obj) {if(!QueueEmpty(&obj->q1)){return QueueBack(&obj->q1);}else{return QueueBack(&obj->q2);}
}bool myStackEmpty(MyStack* obj) {return QueueEmpty(&obj->q1) && QueueEmpty(&obj->q2);}void myStackFree(MyStack* obj) {QueueDestory(&obj->q1);QueueDestory(&obj->q2);free(obj);
}



 


 

http://www.lryc.cn/news/167487.html

相关文章:

  • Python stomp 发送消息无法显示文本
  • postgresql-视图
  • 科技资讯|Vision Pro头显无损音频仅限USB-C AirPods Pro 2耳机
  • Postman应用——初步了解postman
  • 分析报告显示,PHP是编程语言主力军,且在电商领域占据“统治地位”
  • 关于Greenplum Platform Extension Framework(PXF)
  • 编程获取图像中的圆半径
  • 什么是Scrum?如何实施Scrum(敏捷开发)以及敏捷工具
  • 提升运营效率:仓储可视化的实时监控与优化
  • 代理模式和单一职责原理一文读懂(设计模式与开发实践 P6)
  • Linux网络编程|TCP编程
  • FPGA----VCU128的DDR4无法使用问题(全网唯一)
  • 【毕设选题】flink大数据淘宝用户行为数据实时分析与可视化
  • 机器学习练习-决策树
  • 分类预测 | Matlab实现基于LFDA-SVM局部费歇尔判别数据降维结合支持向量机的多输入分类预测
  • Say0l的安全开发-代理扫描工具-Sayo-proxyscan【红队工具】
  • 使用FFmpeg+ubuntu系统转化flac无损音频为mp3
  • I/O多路复用三种实现
  • DataInputStream数据读取 Vs ByteBuffer数据读取的巨大性能差距
  • org.apache.flink.table.api.TableException: Sink does not exists
  • 【多线程】CAS 详解
  • 卷积神经网络实现咖啡豆分类 - P7
  • C++之默认与自定义构造函数问题(二百一十七)
  • Docker从认识到实践再到底层原理(五)|Docker镜像
  • 【Flowable】任务监听器(五)
  • spring-kafka中ContainerProperties.AckMode详解
  • 【rpc】Dubbo和Zookeeper结合使用,它们的作用与联系(通俗易懂,一文理解)
  • ChatGPT的未来
  • Pytorch模型转ONNX部署
  • k8s优雅停服