当前位置: 首页 > news >正文

机器人连续位姿同步插值轨迹规划—对数四元数、b样条曲线、c2连续位姿同步规划

简介:Smooth orientation planning is benefificial for the working performance and service life of industrial robots, keeping robots from violent impacts and shocks caused by discontinuous orientation planning. Nevertheless, the popular used quaternion inter polations can hardly guarantee C2 continuity for multiorientation interpolation. Aiming at the problem, an effiffifficient quaternion interpolation methodology based on logarithmic quaternion was proposed. Quaternions of more than two key orientations were expressed in the exponential forms of quaternion. &ese four-dimensional quaternions in space S3 , when logarithms were taken for them, could be converted to three-dimensional points in space R3 so that B-spline interpolation could be applied freely to interpolate. &e core formulas that B-spline interpolated points were mapped to quaternion were founded since B-spline in terpolated point vectors were decomposed to the product of unitized forms and exponents were taken for them. &eproposed methodology made B-spline curve applicable to quaternion interpolation through dimension reduction and the high-order continuity of the B-spline curve remained when B-spline interpolated points were mapped to quaternions. &e function for reversely fifinding control points of B-spline curve with zero curvature at endpoints was derived, which helped interpolation curve become smoother and sleeker. &e validity and rationality of the principle were verifified by the study case. For comparison, the study case was also analyzed by the popular quaternion interpolations, Spherical Linear Interpolation (SLERP) and Spherical and Quadrangle (SQUAD).

实现效果:

视频效果:

机器人连续位姿同步插值轨迹规划——对数四元数、b样条曲线、c2连续位姿同步规划

技术交流邮箱(欢迎交流、讨论):3531225003@qq.com

B站链接:bilili飞舞哲的个人空间_哔哩哔哩_Bilibili

http://www.lryc.cn/news/165861.html

相关文章:

  • 三维模型3DTile格式轻量化压缩的遇到常见问题与处理方法分析
  • 2023-简单点-开启防火墙后,ping显示请求超时;windows共享盘挂在不上
  • 华为Java工程师面试题
  • 大数据Flink(七十四):SQL的滑动窗口(HOP)
  • Hystrix和Sentinel熔断降级设计理念
  • 获取Windows 10中的照片(旧版)下载
  • 【Redis】Redis作为缓存
  • IDEA(2023)解决运行乱码问题
  • 零基础学前端(二)用简单案例去理解 HTML 、CSS 、JavaScript 概念
  • 线性矩阵不等式(LMI)在控制理论中的应用
  • 如何在Python爬虫程序中使用HTTP代理?
  • ARM架构指令集--专用指令
  • 免费IP类api接口:含ip查询、ip应用场景查询、ip代理识别、IP行业查询...
  • Android Studio 中AGP ,Gradle ,JDK,SDK都是什么?
  • 算法通关18关 | 回溯模板如何解决复原IP问题
  • Layui快速入门之第五节 导航
  • 使用分支——Git Checkout
  • 【2023】数据挖掘课程设计:基于TF-IDF的文本分类
  • java.lang.NoSuchMethodError: java.lang.reflect.Field.trySetAccessible()Z
  • 如何使用SQL系列 之 如何在MySQL中使用存储过程
  • 用 Github Codespaces 免费搭建本地开发测试环境
  • PyTorch实战-实现神经网络图像分类基础Tensor最全操作详解(一)
  • 第29章_瑞萨MCU零基础入门系列教程之改进型环形缓冲区
  • 如何搭建一个react项目(详细介绍)
  • ActiveMQ用法
  • TouchGFX之缓存位图
  • 线性代数的本质(十)——矩阵分解
  • vue实现鼠标拖拽div左右移动的功能
  • 基于Python和mysql开发的商城购物管理系统分为前后端(源码+数据库+程序配置说明书+程序使用说明书)
  • MySQL内外连接、索引特性