当前位置: 首页 > news >正文

math_review

topics

mathmatics

  1. supreme and optimum
  2. Norm and Linear product
  3. topology of R*
  4. Continuious Function

supreme and optimum

Def 1: 非空有界集合必有上确界

common norm

(1) x ∈ \in Rn, ||x||2= x 1 2 + x 2 2 + . . . + x n 2 \sqrt {x_1^2+x_2^2+...+x_n^2} x12+x22+...+xn2
(2) x ∈ \in R

Norm of vector

Def 2: a function f : Rn → \rightarrow R is called norm,if
(1) f(x)>=0 & f(x)=0 if x= 0 ⃗ \vec 0 0
(2) homogenous: f(tx)=|t| f(x)
(3) triangle inquality: f(x+y)<=f(x)+f(y)
f(x)=||x||k

common norm

(1) x ∈ \in Rn, ||x||2= x 1 2 + x 2 2 + . . . + x n 2 \sqrt {x_1^2+x_2^2+...+x_n^2} x12+x22+...+xn2
(2) x ∈ R n \in\ R^n  Rn, ∣ ∣ x ∣ ∣ p = ( x 1 p + . . . + x n p ) 1 p ||x||_p=(x_1^p+...+x_n^p)^{\frac 1 p} ∣∣xp=(x1p+...+xnp)p1
(2) xKaTeX parse error: Got function '\inf' with no arguments as subscript at position 15: \in R^n,||x||_\̲i̲n̲f̲=max\{|x_1|,...…

Def 3: Unit Ball
B = x ∈ R n , ∣ ∣ x ∣ ∣ ≤ 1 B={x\in R^n,||x||\leq 1} B=xRn,∣∣x∣∣1

norm of matrix

P ∈ S + + n , ∣ ∣ x ∣ ∣ p = ( < x , P x > ) 1 2 P\in S_{++}^n,||x||_p=(<x,P_x>)^\frac 1 2 PS++n,∣∣xp=(<x,Px>)21

  1. KaTeX parse error: Got function '\sum' with no arguments as argument to '\sqrt' at position 15: ||A||_F=\sqrt \̲s̲u̲m̲_{i=1}^m\sum_{j…
  2. ∣ ∣ A ∣ ∣ p = m a x ∣ ∣ x ∣ ∣ p = 1 ∣ ∣ A x ∣ ∣ p ||A||_p=\underset {||x||_p=1}{max}||Ax||_p ∣∣Ap=∣∣xp=1max∣∣Axp
  3. ∣ ∣ A ∣ ∣ = m a x j ∑ i ∣ a i j ∣ ||A||=\underset j {max} \sum_i |aij| ∣∣A∣∣=jmaxiaij
  4. ∣ ∣ A ∣ ∣ 2 = σ ( A ) ||A||_2=\sigma(A) ∣∣A2=σ(A)(奇异值,特征值绝对值最大)
  5. KaTeX parse error: Got function '\inf' with no arguments as subscript at position 7: ||A||_\̲i̲n̲f̲=\underset i{ma…

Inner product

f: R n ⊙ R n → R R^n \odot R^n \rightarrow R RnRnR

  1. Nonnegative: f ( x , x ) ≥ 0 , f ( x , x ) = 0 i f f x = 0 f(x,x)\geq 0,f(x,x)=0 iff x=0 f(x,x)0,f(x,x)=0iffx=0
  2. Symmetric: f ( x , y ) = f ( y , x ) f(x,y)=f(y,x) f(x,y)=f(y,x)
  3. Bilinear: f ( a x + b y , z ) = a f ( x , z ) + b f ( y , z ) f(ax+by,z)=af(x,z)+bf(y,z) f(ax+by,z)=af(x,z)+bf(y,z)
    f ( z , a x + b y ) = a f ( z , x ) + b f ( z , y ) f(z,ax+by)=af(z,x)+bf(z,y) f(z,ax+by)=af(z,x)+bf(z,y)
    f(x,y)=<x,y>

定义了内积of vector,we can find corresponding norm;法
< x , x > = ∣ ∣ x ∣ ∣ 2 2 <x,x>=||x||_2^2 <x,x>=∣∣x22 < x , x > p = ∣ ∣ x ∣ ∣ p 2 <x,x>_p=||x||_p^2 <x,x>p=∣∣xp2
given norm ,we can’t find corresponding inner product always(like KaTeX parse error: Got function '\inf' with no arguments as subscript at position 7: ||x||_\̲i̲n̲f̲)

example of inner product

  • comply with above 3 properties
  1. A , B ∈ R m + n , < A , B > = t r ( A T B ) = ∑ i j a i j b i j A,B\in R^{m+n},<A,B>=tr(A^TB)=\sum_{ij}a_{ij} b_{ij} A,BRm+n,<A,B>=tr(ATB)=ijaijbij
  2. l 2 ( R ) = x = ( x 1 , . . . ) , x 1 ∈ R , ∑ i = 1 n ∣ x ∣ 2 < inf ⁡ l^2(R)={x=(x_1,...),x_1\in R,\sum_{i=1}^n |x|^2<\inf} l2(R)=x=(x1,...),x1R,i=1nx2<inf
    KaTeX parse error: Got function '\inf' with no arguments as superscript at position 18: …,y>=\sum_{i=1}^\̲i̲n̲f̲ ̲x_iy_i < \inf
  3. L 2 ( R ) = f : R → R , ∫ R ∣ f ( x ) ∣ 2 d x < inf ⁡ L^2(R)={f:R\rightarrow R,\int_R|f(x)|^2 dx<\inf} L2(R)=f:RR,Rf(x)2dx<inf
    < f , g > L 2 = ∫ R f ( x ) g ( x ) d x <f,g>_{L^2}=\int_Rf(x)g(x)dx <f,g>L2=Rf(x)g(x)dx

Def 5: x , y ∈ R n x,y \in R^n x,yRn
included angle, a n g ( x , y ) = a r c c o s < x , y > ∣ ∣ x ∣ ∣ ∣ . ∣ ∣ y ∣ ∣ ang(x,y)=arccos \frac {<x,y>}{||x|||.||y||} ang(x,y)=arccos∣∣x∣∣∣.∣∣y∣∣<x,y>

Topology of IRn

logistic chain: N o r m → U n i t B a l l → N e i g h b o u r h o o d → L i m i t Norm\rightarrow Unit Ball\rightarrow Neighbourhood\rightarrow Limit NormUnitBallNeighbourhoodLimit

Def 6: given ϵ \epsilon ϵ,the ϵ \epsilon ϵ-neighbourhood of a point x
N ϵ ( x ) = y , y ∈ I R n , ∣ ∣ y − x ∣ ∣ < ϵ N_{\epsilon}(x)={y,y\in IR^n,||y-x||<\epsilon} Nϵ(x)=y,yIRn,∣∣yx∣∣<ϵ
Def 7: interor point of S, ∃ ϵ > 0 , N ϵ ( x ) ∈ S \exists \epsilon>0,N_{\epsilon}(x)\in S ϵ>0,Nϵ(x)S
Def 8: interior of S,the set of all interior points of S
Def 9: Open set O=int O
Def 10: Closed Set IR\F is open
Def 11: ( x k ) (x_k) (xk) converges to x,if ∀ ϵ > 0 , ∀ p , ∣ ∣ x k − x ∣ ∣ p < ϵ , i f k > N \forall \epsilon>0,\forall p,||x_k-x||_p<\epsilon,if\ k>N ϵ>0,p,∣∣xkxp<ϵ,if k>N
Def 12:(limited point) x ∈ I R n , S ∈ I R n , ∃ ( x k ) , x k ≠ x , ( x k ) ∈ S , s . t . x k → x x\in IR^n,S\in IR^n,\exists (x_k),x_k\neq x,(x_k)\in S,s.t. x_k\rightarrow x xIRn,SIRn,(xk),xk=x,(xk)S,s.t.xkx
Def 13: F is closed if it c ontains all its limit points

http://www.lryc.cn/news/163278.html

相关文章:

  • 肖sir__设计测试用例方法之场景法04_(黑盒测试)
  • plt函数显示图片 在图片上画边界框 边界框坐标转换
  • 运行期获得文件名和行号
  • 数组操作UNIAPP
  • MySQL——无法打开MySQL8.0软件安装包或者安装过程中失败,如何解决?
  • DB2存储过程如何编写和执行
  • SpringBoot + FFmpeg实现一个简单的M3U8切片转码系统
  • SpringCloud(35):Nacos 服务发现快速入门
  • OSPF实验:配置与检测全网互通
  • 常见的五种设计模式
  • pandas读取一个 文件夹下所有excel文件
  • Python网页请求超时如何解决
  • 虚幻引擎集成web前端<二>:UE4 像素流 与 web 通信
  • 618-基于FMC+的XCVU3P高性能 PCIe 载板 设计原理图
  • ABB UF C911B108 3BHE037864R010控制主板模块
  • 基于SpringBoot开发的疫情信息管理系统
  • 手敲Cocos简易地图编辑器:人生地图是一本不断修改的书,每一次编辑都是为了克服新的阻挡
  • MySQL——修改数据库和表的字符编码
  • 中国人民大学与加拿大女王大学金融硕士——人生总要逼自己一把
  • SAP MM学习笔记 - 错误 ME092 - Material mainly procured internally(原则上该物料只能内部调达)
  • 【EI会议征稿】2023年智能科学与计算机工程国际学术会议(ISCE 2023)
  • Java多线程编程
  • Windows wsl2安装Ubuntu
  • csp-j模拟赛1总结
  • 有哪些做流程图的软件?分享一些制作方法和注意事项
  • 人工智能AI 全栈体系(一)
  • 权限、认证与授权
  • JAVA 的四种访问权限
  • 【个人博客系统网站】注册与登录 · 加盐加密验密算法 · 上传头像
  • [H5动画制作系列] Sprite及Text Demo