当前位置: 首页 > news >正文

同步FIFO的verilog实现(2)——高位扩展法

一、前言

        在之前的文章中,我们介绍了同步FIFO的verilog的一种实现方法:计数法。其核心在于:在同步FIFO中,我们可以很容易的使用计数来判断FIFO中还剩下多少可读的数据,从而可以判断空、满。

        关于计数法实现同步FIFO的详细内容,请参考:同步FIFO的verilog实现(1)——计数法

二、高位扩展法原理

        我们知道对于FIFO的设计来说,其核心在于设计读写指针,并且生成可靠的空、满信号。

        当读/写地址指针在复位操作期间被置为零时,或者当读指针在从FIFO中读取了最后一个字之后追上了写指针,此时读指针和写指针相等代表着FIFO为空状态。而当写指针再次追上读指针时,此时读指针和写指针相等代表着FIFO为写满。也就是说当读写指针相等时,FIFO要么为空,要么为满。
   因此我们可以将地址位扩展一位,用最高位来判断空满,其余低位还是正常用于读写地址索引。当写指针递增超过FIFO的最大地址时,写指针的MSB位将置为1,同时将其余低位设置回零。读指针也是如此。如果读指针和写指针的MSB不同,则意味着写指针比读指针多绕了一次,表示FIFO写满。如果两个指针的MSB相同,则表示两个指针的回绕次数相同,表示FIFO读空。如下图所示:

        当最高位不同,且其他位相同,则表示读指针或者写指针多跑了一圈,这显然不可能发生,情况只能是写指针多跑了一圈,与就意味着FIFO被写满了。
        当最高位相同,且其他位相同,则表示读指针追到了写指针或者写指针追到了读指针,而显然不会让写指针追读指针(这种情况只能是写指针超过读指针一圈),所以可能出现的情况只能是读指针追到了写指针,也就意味着FIFO被读空了。

三、同步FIFO的verilog实现

        理解了原理,我们就能很快设计出相应的verilog代码:

//------------------------<高位扩展法设计同步FIFO>----------------------------
module sync_fifo1#(  
//-----------------------------<参数定义>---------------------------------parameter FIFO_WIDTH = 16,                          //FIFO宽度parameter FIFO_DEPTH = 16                           //FIFO深度
)(
//-----------------------------<接口定义>---------------------------------input clk,                                          //时钟信号input rst,                                          //复位信号input [FIFO_WIDTH-1:0] din,                         //FIFO输入数据(写数据)input rd_en,                                        //读使能信号 input wr_en,                                        //写使能信号output reg [FIFO_WIDTH-1:0] dout,                   //FIFO输出数据(读数据) output empty,                                       //FIFO空标志 output full                                         //FIFO满标志 
); //-----------------------------<reg定义>---------------------------------reg [FIFO_WIDTH-1:0] fifo_buffer[FIFO_DEPTH-1:0];	//用二维数组实现RAM	reg [$clog2(FIFO_DEPTH):0] wr_addr;			     	//写地址(写指针),位宽要多出一位reg [$clog2(FIFO_DEPTH):0] rd_addr;			    	//读地址(读指针),位宽要多出一位//-----------------------------<wire定义>---------------------------------     wire [$clog2(FIFO_DEPTH) - 1 : 0]	wr_addr_true;	//真实写地址指针wire [$clog2(FIFO_DEPTH) - 1 : 0]	rd_addr_true;   //真实读地址指针wire								wr_addr_msb;	//写地址指针地址最高位wire								rd_addr_msb;	//读地址指针地址最高位assign {wr_addr_msb,wr_addr_true} = wr_addr;		//将最高位与其他位拼接assign {rd_addr_msb,rd_addr_true} = rd_addr;		//将最高位与其他位拼接       //-----------------------------<读操作>-----------------------------------
always@(posedge clk or posedge rst)begin if(rst)rd_addr <= 0;else if(rd_en && !empty)begin                       //读使能有效且FIFO非空rd_addr	<=	rd_addr + 1'd1;                     //读指针递增dout	<=	fifo_buffer[rd_addr_true];               //fifo读出数据endelse beginrd_addr	<=	rd_addr;                            dout	<=	dout;end
end//-----------------------------<写操作>-----------------------------------
always@(posedge clk or posedge rst)begin if(rst)wr_addr <= 0;else if(wr_en && !full)begin                       //写使能有效且FIFO非满wr_addr	<=	wr_addr + 1'd1;                    //读指针递增fifo_buffer[wr_addr_true] <= din;              //数据写入fifoendelse beginwr_addr	<=	wr_addr;                            end
end//-----------------------------<通过地址扩展位更新空/满信号>-----------------------------------
assign	empty = ( wr_addr == rd_addr ) ? 1'b1 : 1'b0;                                              //当所有位相等时,读指针追到了写指针,FIFO被读空
assign	full  = ((wr_addr_msb != rd_addr_msb ) && ( wr_addr_true == rd_addr_true )) ? 1'b1 : 1'b0; //当最高位不同但是其他位相等时,写指针超过读指针一圈,FIFO被写满endmodule

四、测试代码

        给出如下的测试代码:

`timescale 1ns/1ns
//-----------------------------<高位扩展法同步FIFO测试>---------------------------------
module tb_sync_fifo1();parameter WIDTH	= 8;parameter DEPTH	= 8;reg                 clk         ;reg                 rst         ;reg  [WIDTH-1:0]	din    		;reg 				wr_en  		;reg 				rd_en  		;wire [WIDTH-1:0]	dout		;wire 				full        ;wire 				empty       ;//-----------------------------<测试模块例化>---------------------------------
sync_fifo1 #(.FIFO_WIDTH	(WIDTH),		 //FIFO宽度.FIFO_DEPTH (DEPTH)          //FIFO深度
)
sync_fifo_u1(.clk		(clk		),.rst		(rst		),.din     	(din 	    ),.rd_en		(rd_en		),.wr_en		(wr_en		),.dout    	(dout	    ),	.empty		(empty		),	.full		(full		)	
);//-----------------------------<模块测试>---------------------------------
initial beginclk = 1'b0;							//初始时钟为0rst <= 1'b0;						//初始复位din <= 'd0;		wr_en <= 1'b0;		rd_en <= 1'b0;
#10rst <= 1'b1;
#10 rst <= 1'b0;repeat(10)#10 beginwr_en <= 1'b1;rd_en <= 1'b0;din <= $random;                   //生成8位的随机数endrepeat(10)#10 beginwr_en <= 1'b0;rd_en <= 1'b1;end
$finish;
end//------------------------------<设置时钟>----------------------------------------
always #5 clk = ~clk;			endmodule

五、结果

 

http://www.lryc.cn/news/158959.html

相关文章:

  • 数据结构与算法面试
  • android studio cmake生成.a文件(静态库)及调用(c c++)静态库.a
  • 本地部署体验LISA模型(LISA≈图像分割基础模型SAM+多模态大语言模型LLaVA)
  • SpotBugs代码检查:instanceof总是返回true(BC_VACUOUS_INSTANCEOF)
  • Redis的Java客户端:Jedis入门
  • 【完整代码】2023数学建模国赛C题代码--蔬菜类商品的自动定价与补货决策
  • idea:java: Compilation failed: internal java compiler error
  • 普罗米修斯(Prometheus)
  • JAVA面试题2012年版本
  • IED设备模型
  • HTTP代理如何设置
  • 【设计模式】单例设计模式
  • SpingBoot整合Sa-Token框架(1)
  • 软件测试技术题目大全【含答案】
  • C#__线程的优先级和状态控制
  • 103.36.167.X在服务器删除、复制文件的时候会出现卡的情况,是什么原因?
  • Vim 插件应用篇 vim-plug:简洁高效的Vim插件管理工具
  • springboot 请求https的私有证书验证
  • YOLO的基本原理详解
  • 【UE 材质】制作飘动的旗帜
  • windows苹果商店上架ipa(基于appuploader)
  • 什么是SpringCloud Eureka服务注册与发现
  • A Mathematical Framework for Transformer Circuits—Part (1)
  • 关于Maven中使用idea发布java项目的步骤:
  • 如何使用ArcGIS Earth制作地图动画视频
  • 【Linux成长史】Linux基本指令大全
  • ChatGPT:深度学习和机器学习的知识桥梁
  • python-基本数据类型-笔记
  • 如何使用API数据接口给自己创造收益
  • 第三方软件信息安全测评服务范围