当前位置: 首页 > news >正文

JDK源码剖析之PriorityQueue优先级队列

写在前面

版本信息:
JDK1.8

PriorityQueue介绍

在数据结构中,队列分为FIFOLIFO 两种模型,分别为先进先出,后进后出先进后出,后进先出(栈) 而一切数据结构都是基于数组或者是链表实现。

在Java中,定义了Queue接口,接口中定义了CRUD的基本方法。分别add、offer、remove、poll等等,而PriorityQueue 实现此接口实现了基本的CRUD的同时拥有了自己的特性,从名字来看也能知道是优先级队列 : 保持队列头部节点是整条队列中永远是最小或者最大的节点,其实现原理就是一个小顶堆或者大顶堆。上文提及到一切数据结构都是基于数组或者是链表实现,而这里使用了数组实现。

public class PriorityQueue<E> extends AbstractQueue<E>implements java.io.Serializable {transient Object[] queue;    // 由数组实现
}public abstract class AbstractQueue<E>extends AbstractCollection<E>implements Queue<E> {}

小顶堆和大顶堆介绍

从上文描述了PriorityQueue的底层实现是小顶堆或者大顶堆,那么在看源码之前,我们需要先明白小顶堆和大顶堆如何实现~

小顶堆:一颗完全二叉树,其中任意父节点都要小于左右子节点,所以树的根节点是整棵树的最小节点

大顶堆:一颗完全二叉树,其中任意父节点都要大于左右子节点,所以树的根节点是整棵树的最大节点

Comparable和Comparator区别

在看PriorityQueue源码之前还需要分析Comparable和Comparator区别。

Comparable:类需要实现此接口,重写compareTo方法,在compareTo方法中定义比较逻辑,使用时把类强转成Comparable调用compareTo方法,把比较对象传入。所以侵入性比较强,与业务代码强耦合。

Comparator:这个就是一个比较器,只需要把A比较对象和B比较对象都传入即可,不需要于业务代码强耦合

PriorityQueue添加元素源码分析

下文直接把PriorityQueue叫成小顶堆

我们直接从offer方法入手~

public boolean offer(E e) {if (e == null)throw new NullPointerException();modCount++;        // 用于检测是否并发// 因为size从0开始,所以size的值就是数组的索引值。int i = size;// 是否需要扩容if (i >= queue.length)grow(i + 1);  // 为下次索引+1size = i + 1;// 如果是第一个,那么就直接占用数组第一个元素即可,// 因为不管是小顶堆还是大堆堆第一个都直接插入。if (i == 0)queue[0] = e;else// 非第一个节点,此时就需要调整siftUp(i, e);return true;
}

这里的逻辑比较简单,因为这里使用数组实现的小顶堆(也即使用数组实现完全二叉树),而小顶堆的第一个节点是最小的,所以当0索引直接插入即可,非0索引就需要调整小顶堆。这里应该有很多读者是第一次见数组实现二叉树,所以这里把上文的二叉树进行扩展,把数组部分画上去。

在看 siftUp调整方法前,我们看一下grow扩容方法, 因为里面有一个思路大家可以学习~

private void grow(int minCapacity) {int oldCapacity = queue.length;// 容量小于64时,扩容为 oldCapacity + oldCapacity +2 // 容量大于64,扩容为 oldCapacity + oldCapacity/2// 等同于,在容量小的时候,每次扩容大一些,当达到64这个阈值后,扩容小一些,要不然空间会太浪费了~int newCapacity = oldCapacity + ((oldCapacity < 64) ?(oldCapacity + 2) :(oldCapacity >> 1));if (newCapacity - MAX_ARRAY_SIZE > 0)newCapacity = hugeCapacity(minCapacity);// 数组拷贝迁移。queue = Arrays.copyOf(queue, newCapacity);      
}

在每次扩容的时候,会去判断,当前容量是否大于64,如果小于64就直接 原大小 * 2 + 2 扩容,如果大于64以后直接 原大小 + 原大小/2 扩容。目的是为了在容量小的时候扩容大一些,减少扩容次数。在容量达到64阈值后,扩容小一些,减少内存浪费。

下面开始讲解siftUp调整方法

private void siftUp(int k, E x) {// 用户是否传入comparator比较器if (comparator != null)siftUpUsingComparator(k, x);else// 没传入就使用Comparable// 此时类需要实现Comparable接口siftUpComparable(k, x);
}

这里讲解siftUpComparable方法,本质上两个方法没任何区别~

private void siftUpComparable(int k, E x) {Comparable<? super E> key = (Comparable<? super E>) x;while (k > 0) {// 拿到父节点// 因为是使用数组实现的一颗完全二叉树,所以直接-1 右移即可拿到当前插入节点的父节点int parent = (k - 1) >>> 1;Object e = queue[parent];// 与父节点做比较。if (key.compareTo((E) e) >= 0)// 达到用户的预期比较就直接break,要不然继续往父节点的父节点继续做比较,直到根节点break;// 没达到预期,所以把父节点插入到本次插入的节点的位置。queue[k] = e;// 拿到父节点的索引,继续往父节点的父节点做比较。k = parent;}// 插入queue[k] = key;
}

这里光看注释,肯定是看不明白的,所以以画图+注释来理解吧~

PriorityQueue获取元素源码分析

直接从poll方法入手~

public E poll() {if (size == 0)return null;// 拿到最后一个节点的索引值。int s = --size;modCount++;// 因为第一个是小顶堆或者大顶堆要的数据。E result = (E) queue[0];// 拿到最后一节点E x = (E) queue[s];queue[s] = null;   // help gcif (s != 0)// 调整siftDown(0, x);return result;
}

因为小顶堆或者大顶堆都是拿第一个元素,所以这里拿出第一个元素。但是每次拿完就需要调整小顶堆(调整完全二叉树),所以看到siftDown方法。

private void siftDown(int k, E x) {if (comparator != null)siftDownUsingComparator(k, x);elsesiftDownComparable(k, x);
}

本质上这两个方法没任何区别,所以继续看到siftDownComparable方法

// k为0
// x是最后一个节点。
private void siftDownComparable(int k, E x) {Comparable<? super E> key = (Comparable<? super E>)x;// 循环的次数// 是通过数组的大小 右移一位就可以知道树高了。int half = size >>> 1;        while (k < half) {// 往下层找。int child = (k << 1) + 1; Object c = queue[child];    // 左子节点int right = child + 1;      // 右子节点// 左右子节点比较,那个满足规范就作为父节点if (right < size &&((Comparable<? super E>) c).compareTo((E) queue[right]) > 0)// 右节点满足于左节点c = queue[child = right];// 与最后一个节点比较后,达到预期直接退出if (key.compareTo((E) c) <= 0)break;// 替换queue[k] = c;// 下次循环的父节点k = child;}queue[k] = key;
}

因为每次poll取走的是第一个元素,所以需要调整整个小顶堆,而第一个元素是小顶堆的根节点,所以需要调整小顶堆找到一个符合的元素作为根节点。从根节点的左右子节点开始比较,左右子节点比较出预期的节点就作为新的根节点。预期的节点作为下次比较的父节点,通过父节点再找到他的左右子节点做比较,周而复始,直到最后一个节点。

这里光看注释,肯定是看不明白的,所以以画图+注释来理解吧~

http://www.lryc.cn/news/158013.html

相关文章:

  • TSINGSEE青犀AI视频分析/边缘计算/AI算法·人脸识别功能——多场景高效运用
  • 力扣(LeetCode)算法_C++——最大连续 1 的个数 III
  • 23062C++QT day2
  • React三属性之:props
  • 大数据安全 | (一)介绍
  • 软件工程的概念及其重要性
  • [足式机器人]Part3 变分法Ch01-2 数学预备知识——【读书笔记】
  • 【嵌入式开发 Linux 常用命令系列 7.1 -- awk 过滤列中含有特定字符的行】
  • 前端(十六)——Web应用的安全性研究
  • 无涯教程-JavaScript - BIN2HEX函数
  • Kafka环境搭建与相关启动命令
  • 【C++】类的封装 ② ( 封装最基本的表层概念 | 类对象作为参数传递的几种情况 )
  • Linux上安装FTP
  • C/C++使用GDAL库编程窍门之——通用可移植性库(Common Portability Library, CPL)
  • Linux container_of() 宏定义
  • 详解python中的序列类型---列表list
  • Unity 引擎中国版 “团结引擎” 发布
  • MindsDB为许多不支持内置机器学习的数据库带来了机器学习功能
  • 世界级黑客丨电脑犯罪界的汉尼拔
  • 【Matlab】Matlab实现数据的动态显示方法
  • 【Android】SDK安装及配置
  • ETCD详解
  • React笔记(五)hook
  • vue3中使用viewerjs实现图片预览效果
  • Erlang:Linux下使用observer、debugger进行调试
  • 2023 年高教社杯全国大学生数学建模竞赛-E 题 黄河水沙监测数据分析详解+思路+Python代码
  • 一生一芯10——verilator v5.008环境搭建
  • 信息化发展27
  • leetcode做题笔记129. 求根节点到叶节点数字之和
  • 任务管理系统所需功能概述